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Preface

The wireless industry is in the midst of a fundamental shift from providing
voice-only services to offering customers an array of multimedia services, in-
cluding a wide variety of audio, video and data communications capabilities.
Future wireless networks will be integrated into every aspect of daily life,
and therefore could affect our life in a magnitude similar to that of the Inter-
net and cellular phones. However, the emerging applications and directions
require fundamental understanding on how to design and control wireless
networks that lies far beyond what the currently existing theory can provide.
We are deeply convinced that mathematics is the key technology to cope
with central technical problems in the design of wireless networks since the
complexity of the problem simply precludes the use of engineering common
sense alone to identify good solutions.

The main objective of this book is to provide tools for better understand-
ing the fundamental tradeoffs and interdependencies in wireless networks,
with the goal of designing resource allocation strategies that exploit these in-
terdependencies to achieve significant performance gains. The book consists
of three largely independent parts: theory, applications and appendices. The
first part ends with some bibliographical comments and the second part starts
with a short introduction to the problem of resource allocation in wireless
networks. Below we briefly summarize the content of each part.

Theory: Chapters 1 and 2 deal with some fundamental problems in the the-
ory of nonnegative matrices and provide a theoretical basis for the resource
allocation problem addressed in the second part of the book. It should be em-
phasized that our intent is not to provide a thorough treatment of this wide
subject. Instead, we focus on problems that naturally appear in the design
of resource allocation strategies for wireless networks. When developing such
strategies, different characterizations of the Perron root of nonnegative irre-
ducible matrices turn out to be vital to better understanding of fundamental
tradeoffs between diverse optimization objectives. Our main attention will be
directed to the Perron root of nonnegative irreducible matrices whose entries
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continuously depend on some parameter vector. In this case, the Perron root
can be viewed as a map from a convex parameter set into the set of positive
reals. The book is concerned with the properties of this map and, in partic-
ular, with the question under which conditions it is a convex function of the
parameter vector. With few exceptions, we focus on a special structure of
matrix-valued functions that is particularly relevant to applications in wire-
less networks. We provide necessary and sufficient conditions for the Perron
root to be a convex function of the parameter vector as well as address a
closely related problem of convexity of the so-called feasibility set. Chapter
2 is devoted to some properties of a positive solution to a system of linear
equations with nonnegative coefficients. Applications that involve systems of
linear equations with nonnegative coefficients are numerous, ranging from the
physical and engineering sciences to other mathematical areas like graph the-
ory and optimization. Such systems also occur in the power control problem
for power-constrained wireless networks.

Applications: The second part of the book (Chaps. 4-6) deals with the
problem of resource allocation in wireless networks. Roughly speaking, the
objective is to maximize the sum of utilities of link rates for best-effort (elas-
tic) traffic. This is equivalent to the problem of joint power control and link
scheduling, which has been extensively investigated in the literature and is
known to be notoriously difficult to solve, even in a centralized manner. Al-
though the book provides some interesting insights into this problem, the
main focus will be on the power control part. In particular, a class of utility
functions is identified for which the power control problem can be converted
into an equivalent convex optimization problem. The convexity property is
a key ingredient in the development of powerful and efficient power control
algorithms.

Appendices: The main purpose of the appendices is to make the book more
understandable to readers who are not familiar with some basic concepts and
results from linear algebra and convex analysis. The treatment is very su-
perficial and formal proofs are presented only for the most important results
such as the Perron–Frobenius theorem. Moreover, the presentation is limited
to results used somewhere in the book. However, we hope that this collec-
tion of basic results will help some readers to better understand the material
covered by the book. Finally, the presentation introduces the notation and
terminology used throughout the book.

Acknowledgments: The work of Holger Boche and S�lawomir Stańczak was
supported in part by the Bundesministerium für Bildung und Forschung
(BMBF) under grants 01BU150 (Hyeff), 01BU350 (3GET) and 01BU566
(ScaleNet). Marcin Wiczanowski was supported by the Deutsche Forschungs-
gemeinschaft (DFG) under grant BO1734/7-1. The authors also acknowledge
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in München, as well as valuable suggestions and comments from colleagues.

And finally, we would like to thank our families for their patience, support
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On the Perron Root of Irreducible Matrices

This chapter deals with the Perron root of nonnegative irreducible matrices.
Applications abound with nonnegative and positive matrices so that it is nat-
ural to investigate their properties. In doing so, one of the central problems is
to what extent the nonnegativity (positivity) is inherited by the eigenvalues
and eigenvectors. The principal tools for the analysis of spectral properties
of irreducible matrices are provided by Perron–Frobenius theory. A compre-
hensive reference on nonnegative matrices is [2]. Some basic results are sum-
marized in Appendix A.4. For more information about the Perron–Frobenius
theory, the reader is also referred to [3, 4, 5].

We have divided the chapter into two major parts. The purpose of the
first part is to characterize the Perron root of irreducible matrices and present
some interesting bounds on it. There exists a vast literature addressing the
problem of estimating the Perron root of nonnegative irreducible matrices.
Tight bounds on the Perron root have attracted a great deal of attention
over several decades. A brief (and by no means extensive) summary of some
related results can be found at the end of this chapter. In the second part,
we consider the Perron root of matrix-valued functions of some parameter
vector. In this case, each matrix entry is a continuous nonnegative function
defined on some convex parameter set, with the constraint that the matrix
is irreducible for every fixed parameter vector. As a result, the Perron root
can be viewed as a positive real-valued function defined on a convex set.
Now the objective is to provide conditions under which the Perron root is a
convex (or concave) function of the parameter vector. Note that the convexity
property is a key ingredient in the development of access control and resource
allocation strategies for wireless networks.

1.1 Some Basic Definitions

We use XK ⊂ R
K×K to denote the set of all K × K nonnegative irreducible

matrices. Let ρ(X) be the Perron root of X ∈ XK . By the Perron–Frobenius

S. Stańczak et al.: Resource Allocation in Wireless Networks, LNCS 4000, pp. 3–49, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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theorem (Theorem A.25in Appendix A.4.1), ρ(X) is a simple eigenvalue of
X and is equal to its spectral radius so that

ρ(X) = max
λ∈σ(X)

|λ| and ρ(X) ∈ σ(X) (1.1)

where σ(X) denotes the spectrum of X (Definition A.7). Due to (1.1), if
X ∈ XK , ρ(X) is used to denote both the Perron root of X and its spectral
radius. Moreover, if

Xp = ρ(X)p

XT q = ρ(X)q
(1.2)

holds for some q,p ∈ R
K , then both q := q(X) and p := p(X) are positive

vectors, and there are no other nonnegative eigenvectors of X except for
positive multiples of q and p, regardless of the eigenvalue. Unless something
else is stated, assume that qT p = 1 or, equivalently, ‖w‖1 = 1 where w =
q ◦ p. For readability purposes, let ΠK denote the standard simplex in RK

+ ,
i.e. we have

ΠK := {x ∈ R
K
+ : ‖x‖1 = 1} .

Furthermore, we define Π+
K := ΠK ∩RK

++, which contains all positive vectors
whose elements sum up to 1. Hence, w = q ◦ p ∈ Π+

K for any X ∈ XK .

Definition 1.1 (Perron Eigenvectors). Let q,p ∈ RK
++ be left and right

positive eigenvectors of X ∈ XK . If additionally q,p ∈ Π+
K , then the unique

eigenvectors q and p are called the left and right Perron eigenvectors of
X ∈ XK , respectively (see also Definition A.26).

Throughout this chapter, we use q and p to designate positive left and right
eigenvectors of X ∈ XK , respectively. In cases where ambiguity may occur,
we write q(X) and p(X) to denote these eigenvectors of X.

Caution: In the second part of the book, this notation is not used. In
particular, p will not denote any positive right eigenvector.

1.2 Some Bounds on the Perron Root and Their
Applications

This section presents several bounds on the Perron root of irreducible ma-
trices. Some of these results provide a starting point for the development of
the theory presented in the subsequent sections of this book, while others
establish interesting connections, thereby helping to better understand the
complex interrelations in practical systems.

Let SK ⊂ NK be the set of all stochastic matrices of size K×K (Definition
A.20). Therefore, each row of A ∈ SK , say row k denoted by a(k) ∈ RK

+ ,
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satisfies a(k) ∈ ΠK . For every fixed X ∈ XK , we define an associated subset
SK(X) of SK as

SK(X) = {A ∈ SK : (A)k,l = ak,l = 0 if and only if xk,l = 0} . (1.3)

Note that since X is irreducible, every member of SK(X) is an irreducible
stochastic matrix. Hence, we have SK(X) ⊂ XK for any X ∈ XK .

Although not explicitly stated in this form, the following Perron root
characterization can be deduced from [6, Equation 2.6 with 2.8 and 2.9] (see
also the bibliographical notes at the end of this chapter).

Theorem 1.2. Let X ∈ XK be arbitrary. Then, we have

K∑
k,l=1

ukak,l log
xk,l

ak,l
≤ log ρ(X) (1.4)

for all A ∈ SK(X) where u = (u1, . . . , uK) ∈ Π+
K is the left Perron eigenvec-

tor of A. Equality holds in (1.4) if and only if

(A)k,l = ak,l =
xk,lpl

ρ(X)pk
, 1 ≤ k, l ≤ K (1.5)

where p ∈ RK
++ is a positive right eigenvector of X.

Proof. Since ρ(X/ρ(X)) = ρ(X)/ρ(X) = 1, we can assume that ρ(X) = 1.
Let A ∈ SK(X) be fixed and define

f(e) =
K∑

k,l=1

ukak,l log
(xk,l

ak,l

el

ek

)
(1.6)

for an arbitrary e ∈ RK
++. Note that f(1) is equal to the left hand side of

(1.4). Moreover, f(e) is independent of the choice of e since

K∑
k,l=1

ukak,l log
( el

ek

)
=

K∑
k,l=1

ukak,l log el −
K∑

k,l=1

ukak,l log ek

=
K∑

l=1

log el

( K∑
k=1

ukak,l

)
−

K∑
k=1

uk log ek

( K∑
l=1

ak,l

)

=
K∑

l=1

ul log el −
K∑

k=1

uk log ek = 0

where we used the fact that A is stochastic and AT u = u. Thus, without loss
of generality, we can substitute any positive vector into (1.6). In particular,
we can substitute p (a positive right eigenvector of X) into (1.6) and confine
our attention to matrices of the form



6 1 On the Perron Root of Irreducible Matrices

(X̃)k,l = x̃k,l =
xk,lpl

ρ(X)pk
=

xk,lpl

pk
, 1 ≤ k, l ≤ K .

Now as X̃ is stochastic and log x ≤ x − 1 for all x > 0 with equality if and
only if x = 1, we obtain

K∑
l=1

ak,l log
x̃k,l

ak,l
≤

K∑
l=1

ak,l

( x̃k,l

ak,l
− 1
)

=
K∑

l=1

x̃k,l −
K∑

l=1

ak,l = 1 − 1 = 0

for each 1 ≤ k ≤ K, with equality if and only if A = X̃. So

K∑
k=1

uk

K∑
l=1

ak,l log
xk,l

ak,l
≤ 0 = log ρ(X)

with equality attained if and only if A is given by (1.5).

The following corollary is immediate.

Corollary 1.3. Let X ∈ XK be arbitrary and fixed. Then,

log ρ(X) = sup
A∈SK(X)

( K∑
k,l=1

ukak,l log
xk,l

ak,l

)
(1.7)

where u = (u1, . . . , uK) ∈ Π+
K is the left Perron eigenvector of A.

The Perron root characterization in (1.7) turns out to be of great value in
proving the central result of the second part of this chapter, namely a suffi-
cient condition on convexity of the Perron root. Moreover, this characteriza-
tion provides some interesting insights into the properties of the Perron root.
So it is worth dwelling on this for a moment. An interesting problem is the
exact relationship between irreducible matrices that have the same maximiz-
ers in (1.7). To be precise, let X ∈ XK be arbitrary and suppose that the
supremum in (1.7) is attained at A(X) ∈ SK(X). We define

AK(X) :=
{
Y ∈ XK : A(X) = arg sup

A∈SK(Y)

( K∑
k,l=1

ukak,l log
yk,l

ak,l

)}
. (1.8)

Hence, by Theorem 1.2, AK(X) contains all irreducible matrices for which
the supremum in (1.7) is attained at A(X). The following observation char-
acterizes this set.

Observation 1.4. Given an arbitrary X ∈ XK , we have Y ∈ AK(X) if and
only if there exists a diagonal matrix D with positive diagonal entries such
that

Y =
ρ(Y)
ρ(X)

DXD−1. (1.9)
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Proof. Let A(Y) ∈ SK(Y) be any matrix such that

A(Y) = arg sup
A∈SK(Y)

K∑
k,l=1

ukak,l log
yk,l

ak,l
.

It follows from (1.9) that p(Y) = Dp(X). Furthermore, considering Theorem
1.2 and (1.9), we obtain

(A(Y))k,l =
yk,l(Dp)l

ρ(Y)(Dp)k
=

1
ρ(Y)dkpk

(ρ(Y)
ρ(X)

dkxk,l

dl

)
dlpl =

xk,lpl

ρ(X)pk

= (A(X))k,l

where p = p(X). Therefore, AK(Y) = AK(X), and the observation follows.

Interestingly, Theorem 1.2 gives rise to a well-known bound on the Perron
root of the Hadamard product of two irreducible matrices [7]. Note that if
X ◦ Y ∈ XK (entry-wise multiplication), then X ∈ XK and Y ∈ XK .

Corollary 1.5. Let X ◦ Y ∈ XK be arbitrary. Then,

ρ(X ◦ Y) ≤ ρ(X) · ρ(Y). (1.10)

Proof. For every 1 ≤ k, l ≤ K, let X̃ and Ỹ be given by

x̃k,l =

{
xk,l xk,lyk,l > 0
0 xk,lyk,l = 0

ỹk,l =

{
yk,l xk,lyk,l > 0
0 xk,lyk,l = 0

and note that SK(X ◦ Y) = SK(X̃) = SK(Ỹ). Hence, by Corollary 1.3,

logρ(X ◦Y) = sup
A∈SK(X◦Y)

( K∑
k,l=1

ukak,l log
xk,lyk,l

ak,l

)

(a)

≤ sup
A∈SK(X◦Y)

( K∑
k,l=1

ukak,l log
xk,lyk,l

ak,lak,l

)

(b)
= sup

A∈SK(X◦Y)

( K∑
k,l=1

ukak,l log
xk,l

ak,l
+

K∑
k,l=1

ukak,l log
yk,l

ak,l

)

(c)

≤ sup
A∈SK(X◦Y)

( K∑
k,l=1

ukak,l log
xk,l

ak,l

)
+ sup

A∈SK(X◦Y)

( K∑
k,l=1

ukak,l log
yk,l

ak,l

)

= sup
A∈SK(X̃)

( K∑
k,l=1

ukak,l log
xk,l

ak,l

)
+ sup

A∈SK(Ỹ)

( K∑
k,l=1

ukak,l log
yk,l

ak,l

)
(d)

≤ log ρ(X) + log ρ(Y)
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where (a) is due to the fact a2
k,l ≤ ak,l ≤ 1 for any A ∈ SK(X◦Y), (b) follows

from log(xy) = log x + log y for all x, y > 0, (c) holds since sup(f + g) ≤
sup f + sup g for any functions f, g, and (d) follows from Corollary 1.3 and
the fact that SK(X̃) ⊆ SK(X) and SK(Ỹ) ⊆ SK(Y).

Remark 1.6. It is interesting to point out that a necessary condition for equal-
ity to hold in (1.10) is that there exists a diagonal matrix D with positive
diagonal elements such that X = ρ(X)

ρ(Y)DYD−1. This is because equality in
(c) can hold only if Y ∈ AK(X). By Observation 1.4, however, this is true if
and only if there exists a diagonal matrix D with positive diagonal elements
such that X = ρ(X)

ρ(Y)DYD−1.

The next result provides an upper bound on the logarithm of ρ(X), thereby
giving rise to another type of Perron root characterization. In Sect. 1.2.3,
using different techniques, we generalize this result by considering F (ρ(X))
where F : R++ → R pertains to some class of continuous functions, of which
the logarithmic function is a special case.

Theorem 1.7. Let X ∈ XK , and let w := w(X) = (w1, . . . , wK) = p ◦ q ∈
Π+

K , where q and p are left and right positive eigenvectors of X, respectively.
Then, for all s ∈ RK

++,

log ρ(X) ≤
K∑

k=1

wk log
(Xs)k

sk
, (1.11)

with equality if s = p.

Proof. Let s ∈ RK
++ be arbitrary and let ŝk = sk/pk, 1 ≤ k ≤ K, which is

well-defined since pk > 0 for each 1 ≤ k ≤ K. Since X is irreducible, Xs > 0
for any s > 0 (see Appendix A.4). Hence, the right-hand side of (1.11) is
well-defined. We have

K∑
k=1

wk log ŝk =
K∑

k=1

pkqk log ŝk =
K∑

k=1

pk

K∑
l=1

xl,kql

ρ(X)
log ŝk

=
K∑

l=1

plql

K∑
k=1

xl,kpk

ρ(X)pl
log ŝk.

Since
∑K

k=1
xl,kpk

ρ(X)pl
= 1, 1 ≤ l ≤ K, we can apply Jensen’s inequality to obtain

K∑
k=1

xl,kpk

ρ(X)pl
log ŝk ≤ log

( 1
ρ(X)pl

K∑
k=1

xl,kpkŝk

)
= log

(
Xs
)
l

pl
− log ρ(X)

(1.12)
for every 1 ≤ l ≤ K with equality if s = p. Now combining this with the
previous equality and the fact that ‖w‖1 = 1 yields
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log ρ(X) ≤
K∑

l=1

wl log

(
Xs
)
l

pl
−

K∑
l=1

wl log ŝl =
K∑

l=1

wl log

(
Xs
)

l

sl

for all s > 0, with equality if s = p.

Remark 1.8. In general, s = p is not necessary for the equality in (1.11) to
hold. For instance, if all rows of X ∈ XK have only one positive entry, then
there is actually no sum in (1.12) for each 1 ≤ l ≤ K. Therefore, in such
cases, the right-hand side of (1.12) is identically equal to the left-hand side,
regardless of the choice of s. An example of a K ×K irreducible matrix with
only one positive entry in each row is the circulant matrix with the first row
given by (0, 0, . . . , 0, α) for some constant α > 0 (see (1.16)).

As an immediate consequence of Theorem 1.7, one obtains:

Corollary 1.9. Let X ∈ XK ,p ∈ RK
++ and w ∈ Π+

K be as in Theorem 1.7.
Then,

log ρ(X) = inf
s∈RK

++

K∑
k=1

wk log
(Xs)k

sk
(1.13)

The infimum is attained if s = p.

Recall that Theorem 1.2 has been used to prove an upper bound on ρ(X◦Y)
(Corollary 1.5). Interestingly, if we replace the entrywise product (or the
Hadamard product) by normal matrix multiplication, ρ(XY) can be arbi-
trarily large on XK . So even if X ∈ XK and Y ∈ XK are fixed and known,
not much can be said about ρ(XY). However, if instead of Theorem 1.2, we
consider Theorem 1.7, it is possible to derive a lower bound for ρ(XY) on
the following set of irreducible matrices generated by arbitrary X ∈ XK :

WK(X) := {Y ∈ XK : q(Y) ◦ p(Y) = q(X) ◦ p(X) ∈ Π+
K} ⊂ XK . (1.14)

In words, given any X ∈ XK , WK(X) is a set of those irreducible matrices Y
such that q(Y) ◦ p(Y) = q(X) ◦ p(X) = w(X). Note that for any X ∈ XK ,
there holds

X,XT ∈ WK(X) .

So, if X is not symmetric, the cardinality of WK(X) is at least 2.

Corollary 1.10. Suppose that X ∈ XK is given, and let Y ∈ WK(X) be
arbitrary but chosen such that XY ∈ XK . Then,

ρ(X)ρ(Y) ≤ ρ(XY) , (1.15)

with equality if p(Y) = p(X).
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Proof. Let w = q(X) ◦ p(X) = q(Y) ◦ p(Y). By assumption, X,Y,XY ∈
XK , from which we have ρ(X), ρ(Y), ρ(XY) > 0. Therefore, (1.15) is true if
and only if

log ρ(X) + log ρ(Y) ≤ log ρ(XY) .

Now by Theorem 1.7,
K∑

k=1

wk log
(XYs)k

sk
=

K∑
k=1

wk log
(

(XYs)k

(Ys)k

(Ys)k

sk

)

=
K∑

k=1

wk log
(XYs)k

(Ys)k
+

K∑
k=1

wk log
(Ys)k

sk

≥ log ρ(X) + log ρ(Y)

for all s ∈ RK
++. So, by the Collatz-Wielandt formula (Theorem A.27)),

log ρ(X) + log ρ(Y) ≤ min
s∈RK

++

K∑
k=1

wk log
(XYs)k

sk
≤ min

s∈RK
++

max
1≤k≤K

log
(XYs)k

sk

= log
(

min
s∈RK

++

max
1≤k≤K

(XYs)k

sk

)
= log ρ(XY) .

This proves the bound. Considering Theorem 1.7, we see that there is equality
in (1.15) if p(X) = p(Y), and the corollary follows.

As a consequence of the corollary and the remark before, one has

ρ(X)ρ(XT ) ≤ ρ(XXT )

with equality if X is symmetric.
Note that we have made the assumption XY ∈ XK since the set of

irreducible matrices is not closed under matrix multiplication. For instance,
the circulant matrix

T :=

⎛
⎝ 0 ··· 0 0 1

1 ··· 0 0 0
...

...
... ···

...
0 ··· 1 0 0
0 ··· 0 1 0

⎞
⎠ ∈ R

K×K
+ (1.16)

and TK−1 are both irreducible. However, their product TTK−1 = I is not
irreducible.

The last result in this section is a simple application of Theorem 1.7.
Again, the result gives rise to a Perron root characterization that is a special
case of the Perron root characterizations presented in Sect. 1.2.3.

Theorem 1.11. Let X ∈ XK ,p ∈ RK
++, and w ∈ Π+

K be as in Theorem 1.7.
Then,

ρ(X) ≤
K∑

k=1

wk
(Xs)k

sk
(1.17)

for all s ∈ RK
++, with equality if and only if s = p.
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Proof. By Theorem 1.7 and ‖w‖1 = 1, we have

0 ≤
K∑

k=1

wk log
(

(Xs)k

sk

)
− log ρ(X)

K∑
k=1

wk =
K∑

k=1

wk log
(

(Xs)k

ρ(X)sk

)
.

Now since log x ≤ x − 1 for all x > 0 with equality if and only if x = 1, this
implies that

0 ≤
K∑

k=1

wk

[
(Xs)k

ρ(X)sk
− 1
]

=
K∑

k=1

wk
(Xs)k

ρ(X)sk
−

K∑
k=1

wk

=
1

ρ(X)

K∑
k=1

wk
(Xs)k

sk
− 1

(1.18)

from which the bound in (1.17) follows. Moreover, equality holds if and only
if s = p.

The following corollary is immediate.

Corollary 1.12. Let X ∈ XK ,p ∈ RK
++, and w ∈ Π+

K be as in Theorem 1.7.
Then,

ρ(X) = inf
s∈RK

++

K∑
k=1

wk
(Xs)k

sk
. (1.19)

The infimum is attained if and only if s = p.

We point out that s = p is necessary and sufficient for the equality in (1.17)
to hold for all irreducible matrices, including the circulant matrix in (1.16).
This is because log x ≤ x − 1 for x > 0 with equality if and only if x = 1.
Therefore, there is equality in (1.18) if and only if s = p. This stands in some
contrast to Theorem 1.7.

1.2.1 Concavity of the Perron Root on Some Subsets of
Irreducible Matrices

In this section, we apply the above results to obtain bounds on the Perron
root of

X(µ) := (1 − µ)X̂ + µX̌, µ ∈ [0, 1]

where X̂ ∈ XK and X̌ ∈ XK are given. Note that X(µ) ∈ XK for all 0 ≤ µ ≤
1. In particular, the results show that the Perron root is concave on some
subsets of XK . Given an arbitrary X ∈ XK , we are particularly interested
in WK(X) ⊂ XK defined by (1.14). The first theorem is an application of
Theorem 1.7 and asserts that the Perron root is log-concave on WK(X) (for
the definition of log-concavity, see Appendix B.3).



12 1 On the Perron Root of Irreducible Matrices

Theorem 1.13. Suppose that X ∈ XK is given and X̂, X̌ ∈ WK(X) are
arbitrary. Then,

ρ(X(µ)) ≥ ρ(X̂)1−µρ(X̌)µ (1.20)

for all µ ∈ (0, 1).

Proof. Assume that µ ∈ (0, 1) is fixed, and let p̃ be a positive right eigen-
vector of X(µ). Furthermore, let w = q(X̂) ◦ p(X̂) = q(X̌) ◦ p(X̌). Since
‖w‖1 = 1 and ρ(X(µ)) = (X(µ)p̃)k/p̃k for each 1 ≤ k ≤ K, one has

log ρ(X(µ)) =
K∑

k=1

wk log ρ(X(µ)) =
K∑

k=1

wk log
( (X(µ)p̃)k

p̃k

)

=
K∑

k=1

wk log
(

(1 − µ)(X̂p̃)k + µ(X̌p̃)k

p̃k

)
, µ ∈ (0, 1) .

Hence, by concavity of the logarithmic function,

log ρ(X(µ)) ≥ (1 − µ)
K∑

k=1

wk log
(

(X̂p̃)k

p̃k

)
+ µ

K∑
k=1

wk log
(

(X̌p̃)k

p̃k

)
≥ (1 − µ) log ρ(X̂) + µ log ρ(X̌) ,

where the last step follows from Theorem 1.7.

Interestingly, we can obtain a significantly stronger assertion if instead of
Theorem 1.7, we consider Theorem 1.11.

Theorem 1.14. Let X̂ and X̌ be as in Theorem 1.13. Then,

ρ(X(µ)) ≥ (1 − µ)ρ(X̂) + µρ(X̌), µ ∈ (0, 1) . (1.21)

Moreover, strict inequality holds if there is no α > 0 such that p(X̂) = αp̌(X̌).

Proof. Let µ ∈ (0, 1) be arbitrary, and let w = q(X̂) ◦ p(X̂) = q(X̌) ◦ p(X̌).
Suppose that p̃ is a right positive eigenvector of X(µ). Proceeding essentially
as above yields

ρ(X(µ)) =
K∑

k=1

wkρ(X(µ)) =
K∑

k=1

wk
(X(µ)p̃)k

p̃k

= (1 − µ)
K∑

k=1

wk
(X̂p̃)k

p̃k
+ µ

K∑
k=1

wk
(X̌p̃)k

p̃k
.

Now considering Theorem 1.11 proves the bound. To prove strict concavity,
note that by Theorem 1.11,
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ρ(X̂) =
K∑

k=1

wk
(X̂p̃)k

p̃k
and ρ(X̌) =

K∑
k=1

wk
(X̌p̃)k

p̃k

if and only if p̃ = α1p(X̂) and p̃ = α2p(X̌) for some α1, α2 > 0 or, equiva-
lently, if and only if there exists α > 0 such that p(X̂) = αp(X̌). Hence,

(1 − µ)
K∑

k=1

wk
(X̂p̃)k

p̃k
+ µ

K∑
k=1

wk
(X̌p̃)k

p̃k
> (1− µ)ρ(X̂) + µρ(X̌), µ ∈ (0, 1) .

if there is no α > 0 such that p(X̂) = αp(X̌).

For any X ∈ XK , the theorem shows that the Perron root is concave on
WK(X). It is interesting to notice that W2(X) = X2 for any X ∈ X2 such
that trace(X). Consequently, Theorem 1.14 implies that if K = 2, the Perron
root is concave on the set of traceless irreducible matrices.

Furthermore, an examination of Observation 1.4 reveals that X̌ ∈ AK(X̂)
for some given X̂ if and only if

X̌ =
ρ(X̌)
ρ(X̂)

DX̂D−1 .

Now since q(X̌) = D−1q(X̂) and p(X̌) = Dp(X̂), we see that X̌ ∈ AK(X̂)
implies

w(X̌) = (D−1q(X̂)) ◦ Dp(X̂) = w(X̂) .

Hence, we can conclude that

AK(X) ⊆ WK(X) (1.22)

for any X ∈ XK . This gives rise to the following corollary.

Corollary 1.15. Suppose that X ∈ XK is given, and let X̂, X̌ ∈ AK(X).
Then,

ρ(X(µ)) ≥ ρ(X̂)1−µρ(X̌)µ and ρ(X(µ)) ≥ (1 − µ)ρ(X̂) + µρ(X̌)

for all µ ∈ (0, 1).

Proof. Combine (1.22) with Theorems 1.13 and 1.14.

Another consequence of Observation 1.4, the relationship (1.22) and Theorem
1.14 is the following.

Corollary 1.16. Let X ∈ XK , and let D �= I be an arbitrary diagonal matrix
with positive diagonal entries. Then,

ρ((1 − µ)X + µDXD−1) ≥ (1 − µ)ρ(X) + µρ(DXD−1) = ρ(X) (1.23)

for all µ ∈ (0, 1).
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Finally, as XT ∈ WK(X) for any X ∈ XK , it follows from Theorem 1.14
that ρ((1 − µ)X + µXT ) is a concave function of µ ∈ [0, 1]. If, in addition,
X �= XT , we have p(X) �= αp(XT ) for any constant α. This leads to the
following corollary.

Corollary 1.17. Let X with X �= XT be given. Then, ρ((1−µ)X+ µXT ) is
a strictly concave function of µ ∈ [0, 1].

1.2.2 Kullback–Leibler Divergence Characterization

The Kullback-Leibler divergence (KLD) between two probability mass func-
tions is one of the fundamental concepts in information theory and also in
other fields like statistics and physics [8, 9, 10]. In fact, the mutual infor-
mation of two random variables is equal to the KLD between their joint
distributions and product distributions [9]. In this section, we characterize
the Perron root of irreducible matrices in terms of the KLD generalized to
any positive discrete measure. Let us start with the precise definition of the
KLD.

Definition 1.18. Suppose that x is a realization of a discrete random vari-
able with the set of possible values X. Then, the KLD between two probability
mass functions f(x), x ∈ X, and g(x), x ∈ X, is defined as [9]

D(f‖g) :=
∑
x∈X

f(x) log
f(x)
g(x)

, (1.24)

where we used the convention that 0 log 0
g = 0 and f log f

0 = ∞.

Note that the KLD is not a distance since it is not symmetric D(f‖g) �=
D(g‖f) and does not satisfy the triangle inequality. Nevertheless, the defini-
tion makes sense since D(f‖g) is always nonnegative with D(f‖g) = 0 if and
only if f = g. This immediately follows from the fact that log x ≤ x − 1 for
every x > 0 with equality if and only if x = 1. Hence,

D(f‖g) =
∑
x∈X

f(x) log
f(x)
g(x)

= −
∑
x∈X

f(x) log
g(x)
f(x)

≥
∑
x∈X

f(x) −
∑
x∈X

g(x) = 1 − 1 = 0
(1.25)

with equality if and only if f = g.
The definition of the KLD can be generalized in a natural manner to any

positive discrete measure as follows.

Definition 1.19. Let X ∈ XK , and let A ∈ SK , where SK is the set of
stochastic matrices. Then,
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D(a(k)‖x(k)) =
K∑

l=1

ak,l log
ak,l

xk,l
, 1 ≤ k ≤ K (1.26)

is the (generalized) KLD between the kth row of A and the kth row of X
denoted by a(k) and x(k), respectively.

Note that since x log x
0 = ∞ for all x > 0 and 0 log 0

x = 0 for all x ≥ 0, A
in the definition above is an arbitrary stochastic matrix. Comparing (1.26)
with (1.4) reveals that the left-hand side of (1.4) multiplied by −1 is equal
to
∑K

k=1 ukD(a(k)‖x(k)). Combining this with Corollary 1.3 gives rise to a
relationship between the KLD and the Perron root of nonnegative irreducible
matrices.

Observation 1.20. Let X ∈ XK be arbitrary, and let SK(X) be a set of
irreducible stochastic matrices defined by (1.3). Then,

log
1

ρ(X)
= inf

A∈SK(X)

( K∑
k=1

ukD(a(k)‖x(k))
)

(1.27)

where u ∈ Π+
K is the left Perron eigenvector of A. The infimum in (1.27) is

attained if and only if

(A)k,l = ak,l =
xk,lpl

ρ(X)pk
, 1 ≤ k, l ≤ K (1.28)

where p is a positive right eigenvector of X.

On the other hand, when we consider Theorem 1.7, one obtains the following
characterization.

Observation 1.21. Given X ∈ XK , let w = q ◦p ∈ Π+
K , where q and p are

positive left and right eigenvectors of X, respectively. Then,

log ρ(X) = inf
s∈RK

++

(
D(w‖s) − D(w‖Xs)

)
. (1.29)

The infimum is attained if s = p.

1.2.3 Some Extended Perron Root Characterizations

As already mentioned, this section generalizes some of the previous results to
a certain class of functions that depends on a nonnegative irreducible matrix
X. Although the following definition of this function class may appear a bit
artificial, the reader will be convinced of its importance in the second part of
the book. In particular, it will become clear that for functions from outside of
this class, the network problems may be hardly tractable or even not solvable
efficiently under real world conditions.
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Definition 1.22 (Function Class G(X)). Let X ∈ XK be given. Say that a
continuous function F : R++ → R pertains to a function class G(X) (written
as F ∈ G(X)) if

(i) F is continuously differentiable and strictly increasing,
(ii) for any fixed z ∈ Π+

K , the function H : RK
++ → R given by

H(s) :=
K∑

k=1

zkF

(
(Xs)k

sk

)
(1.30)

attains its infimum on R
K
++. Moreover, all local minima are global and

∇H(s∗) = 0 (1.31)

is necessary and sufficient for s∗ ∈ RK
++ to be a global minimizer.

Remark 1.23. Note that members of G(X) are not necessarily bijections from
R++ onto R. In fact, they are injections (one-to-one maps) from R++ into
R so that their ranges are in general subsets of R. The definition could be
also modified to include the case of a function defined on some arbitrary open
subset of R++. The second requirement ensures that the set {H(s) : s ∈ RK

++}
is bounded below for any fixed vector z > 0 and the greatest lower bound,
which is the infimum of H over all positive vectors, is attained for some
s∗ ∈ RK

++ if and only if (1.31) holds. However, this is not equivalent to
saying that H : R

K
++ → R is a convex function. Finally, note that (1.31) is a

necessary optimality condition as RK
++ is an open subset of RK .

Two prominent examples of functions belonging to G(X) for some X ∈ XK

have already been considered in the foregoing sections. These are F (x) =
log x, x > 0, and F (x) = x, x > 0. It is obvious that in these two special
cases, the first requirement in the definition above is satisfied. When F is the
linear function, it can be seen that the function H has a global minimum on
RK

++ for any choice of X ∈ XK and z ∈ Π+
K . In contrast, this does not need

to be true if F is the logarithmic function. For instance, when X ∈ XK is
equal to the circulant matrix given by (1.16), the set {H(s) : s ∈ RK

++} may
fail to be bounded below.1 So, the logarithmic function pertains to G(X) if X
is confined to some subset of XK for which H has a global minimum on RK

++

for any z ∈ Π+
K . Note that the set is not empty since it contains all positive

matrices.
If the infimum is attained, the requirement that every local minimum

is a global one is satisfied in these two cases as well. This is because,
with these choices of F , the problem of minimizing H(s) over RK

++ can
be transformed into an equivalent convex problem using the substitution
1 Note that if w = q(X) ◦ p(X), then the set is bounded below for any X ∈ XK

since then, by Theorem 1.7, H(s) ≥ log ρ(X) for all s ∈ R
K
++, with ρ(X) > 0

whenever X ∈ XK .
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x = log s, s ∈ RK
++. More precisely, using the results of Chapter 6, the

function He(x) = H(ex),x ∈ RK , can be shown to be convex when either
F (x) = x, x > 0, or F (x) = log x, x > 0. Therefore, every stationary point x∗

of He satisfying ∇He(x∗) = 0 is a global minimizer of He(x) over R
K . At the

same time, we have ∇He(x∗) = 0 if and only if ∇H(s∗) = 0 with x∗ = log s∗,
from which we conclude that every stationary point s∗ satisfying (1.31) is a
global minimum of H(s) over RK

++. For formal proofs, the reader is referred
to Chapter 6. For the purpose of this section, it is sufficient to assume that
F ∈ G(X).

The first result gives rise to a characterization of F (ρ(X)) in terms of the
minima of H(s) over RK

++. Recall that by assumption, qT p = 1 implying
that p ◦ q ∈ Π+

K .

Theorem 1.24. Let X ∈ XK be given, and let F ∈ G(X) be arbitrary. Sup-
pose that w = p ◦ q ∈ Π+

K , which is a unique vector. Then,

K∑
k=1

wkF

(
(Xs)k

sk

)
≥ F (ρ(X)) (1.32)

for all s ∈ RK
++. Equality holds if s = p > 0 (unique up to positive multiples).

Moreover, p = argmins∈RK
++

H(s) with H(s) defined by (1.30) if and only if
z = w > 0.

Remark 1.25. In fact, we have H(s) =
∑

k zk(Xs)k/sk ≥ F (ρ(X)) for all
s ∈ RK

++ if and only if z = w, which is more than what the theorem asserts.
This immediately follows from Lemma 1.30 stated later in this section.

Proof. Consider the following minimization problem:

min
s∈RK

++

H(s) = min
s∈RK

++

K∑
k=1

zkF

(
(Xs)k

sk

)

for some given z ∈ Π+
K . By assumption, the minimum exists and (1.31) is

a necessary and sufficient condition for characterizing all global minimizers.
Hence, s∗ > 0 minimizes H over RK

++ if and only if

K∑
j=1

zjF
′
(

(Xs∗)j

s∗j

)
Xjk

s∗j
= zkF ′

(
(Xs∗)k

s∗k

)
(Xs∗)k

(s∗k)2
, 1 ≤ k ≤ K . (1.33)

Using
u(z, s) :=

(z1

s1
,
z2

s2
, . . . ,

zK

sK

)
(1.34)

we can write (1.33) in matrix form to obtain

(F′(s∗)X)T u(z, s∗) = F′(s∗)(Γ(s∗))−1u(z, s∗) (1.35)
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with Γ(s) := diag
(

s1
(Xs)1

, . . . , sK

(Xs)K

)
and

F′(s) := diag
(

F ′
(

(Xs)1
s1

)
, . . . , F ′

(
(Xs)K

sK

))
. (1.36)

Now since (Xp)k/pk = ρ(X), 1 ≤ k ≤ K, it follows that F′(p) = F ′(ρ(X))I
with F ′(ρ(X)) > 0. Thus, if s∗ = p, the necessary and sufficient optimality
condition (1.35) becomes

XT u(z,p) = ρ(X)u(z,p) .

So, p is a global minimizer if and only if u(z,p) = q. An examination of (1.34)
reveals that this is true if and only if z = w = p ◦q ∈ Π+

K , which is uniquely
defined in Π+

K since p > 0 and q > 0 are unique eigenvectors of X ∈ XK up
to a scaling factor. This proves the second part of the theorem. However, the
lower bound (1.32) immediately follows as p is a global minimizer if z = w,
and therefore, due to ‖w‖1 = 1, we have

min
s∈RK

++

K∑
k=1

wkF

(
(Xs)k

sk

)
=

K∑
k=1

wkF

(
(Xp)k

pk

)
=

K∑
k=1

wkF (ρ(X)) = F (ρ(X))

where p > 0 is unique up to positive multiples.

It should be emphasized that due to positivity of q and p for any X ∈ XK ,
the weight vector w = p ◦ q is automatically positive. Hence, K addends
appear in (1.32).

1.2.4 Collatz–Wielandt-Type Characterization of the Perron Root

Based upon Theorem 1.24, in this section, we prove a saddle point charac-
terization of the Perron root. Because of similarity to the Collatz–Wielandt
formula [3], the characterization is referred to as Collatz–Wielandt-type char-
acterization of the Perron root. Before starting with the analysis, let us pre-
cisely define a saddle point of a continuous function.

Definition 1.26 (Saddle Point). Suppose that G : D1 × D2 → R is a
continuous function where D1, D2 ⊆ RK are some open sets.2 We say that
(s∗, z∗) ∈ D1 × D2 is a saddle point of G if, for all s ∈ D1, z ∈ D2, there
holds

G(s∗, z) ≤ G(s∗, z∗) ≤ G(s, z∗) .

The following standard result provides a necessary and sufficient condition
for a pair of vectors to be a saddle point.

2 Again, note that the range of G may be a subset of R.
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Theorem 1.27. Under the assumption that the following maxima and min-
ima exist, a vector pair (s∗, z∗) ∈ D1 × D2 is a saddle point of a continuous
function G : D1 × D2 → R if and only if

min max
s∈D1 z∈D2

G(s, z) = maxmin
z∈D2 s∈D1

G(s, z)

and

max
z∈D2

G(s∗, z) = min max
s∈D1 z∈D2

G(s, z)

min
s∈D1

G(s, z∗) = max min
z∈D2 s∈D1

G(s, z) .
(1.37)

Now consider the following simple lemma.

Lemma 1.28. For any F ∈ G(X) and X ∈ XK , there holds

min
s∈RK

++

max
z∈Π+

K

K∑
k=1

zkF

(
(Xs)k

sk

)
= F (ρ(X)) . (1.38)

Moreover, the minimum is attained if and only if s = p.

Proof. For any z ∈ Π+
K and s ∈ RK

++, we have

K∑
k=1

zkF

(
(Xs)k

sk

)
≤ max

1≤k≤K
F

(
(Xs)k

sk

)
.

As z is positive, equality holds if and only if F ((Xs)k/sk) = c, k = 1 . . .K,
for some c ∈ R. Thus, since F is strictly monotonic and X is irreducible,
we see that the equality holds if and only if s = p > 0, in which case
F ((Xp)k/pk) = F (ρ(X)) for each 1 ≤ k ≤ K. Moreover, for any z ∈ Π+

K ,
one has

min
s∈RK

++

K∑
k=1

zkF

(
(Xs)k

sk

)
≤ min

s∈RK
++

max
1≤k≤K

F

(
(Xs)k

sk

)

= F

(
min

s∈RK
++

max
1≤k≤K

(Xs)k

sk

)
= F
(
ρ(X)
) (1.39)

where, due to the assumption, the first minimum exists and the last equality
follows from the Collatz–Wielandt formula for irreducible matrices (Theorem
A.27). Equality holds if and only if s = p where p > 0 is unique (up to
positive multiples) for any X ∈ XK . Now considering Theorem 1.24 proves
the lemma.

For the max-min part of the saddle point characterization, we need the fol-
lowing lemma.
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Lemma 1.29. Let X ∈ XK and F ∈ G(X) be given. Then, the continuous
function E : Π+

K → R defined by

E(z) := min
s∈RK

++

H(s) = min
s∈RK

++

K∑
k=1

zkF

(
(Xs)k

sk

)
(1.40)

is strictly concave.

Proof. Since H(αs) = H(s) for any α > 0, we can assume that ‖s‖1 = 1.
Concavity of E(z) is clear from the properties of the minimum operator. So
we only need to show strict concavity. To this end, assume that E : Π+

K → R

is not strictly concave. Then, there must exist ẑ ∈ Π+
K and ž ∈ Π+

K with
ẑ �= ž such that

E(z(µ)) = (1 − µ)E(ẑ) + µE(ž)

= (1 − µ) min
s∈RK

++

K∑
k=1

ẑkF
((Xs)k

sk

)
︸ ︷︷ ︸

Ĥ(s)

+µ min
s∈RK

++

K∑
k=1

žkF
( (Xs)k

sk

)
︸ ︷︷ ︸

Ȟ(s)

for some µ ∈ (0, 1) where z(µ) = (1 − µ)ẑ + µž ∈ Π+
K . Clearly, the equality

holds if and only if one of the following holds.

(i) there exist ŝ ∈ R
K
++ and š ∈ R

K
++ with ŝ �= š such that Ĥ(ŝ) = Ȟ(š) =

E(ẑ) = E(ž).
(ii) there exists s∗ ∈ RK

++ such that Ĥ(s∗) = Ȟ(s∗) = E(ẑ) = E(ž).

First, we consider (i). Let µ ∈ (0, 1) be arbitrary and define s̃(µ) ∈ RK
++ as

H(s̃(µ)) = E(z(µ)). In words, s̃(µ) minimizes the function H with the weight
vector being equal to z(µ). Then, we have

(1 − µ)Ĥ(ŝ) + µȞ(š) = E(z(µ)) = H(s̃(µ)) = (1 − µ)Ĥ(s̃(µ)) + µȞ(s̃(µ)) .

This however contradicts ŝ �= š, and hence disproves (i).
Now let us turn our attention to (ii). By assumption, s∗ minimizes H over

RK
++ if and only if (1.31) is satisfied. Thus, proceeding essentially as in the

proof of Theorem 1.24 shows that H attains its minimum at s∗ ∈ RK
++ for

both ẑ and ž if and only if

(F′(s∗)X)T u(z̃, s∗) = F′(s∗)(Γ(s∗))−1u(z̃, s∗), z̃ = ẑ and z̃ = ž

where F′(s) is defined by (1.36), Γ(s) = diag(s1/(Xs)1, . . . , sK/(Xs)K) is
positive definite, and u(z̃, s) = (z̃1/s1, . . . , z̃K/sK). Due to strict monotonic-
ity of F , the diagonal elements of F′(s) are positive for all s ∈ RK

++. Therefore,
F′(s∗) is invertible and(

Γ(s∗)F′(s∗)−1XT F′(s∗)
)
u(z̃, s∗) = u(z̃, s∗) .
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Since X is irreducible, so also is A(s∗) := Γ(s∗)F′(s∗)−1XT F′(s∗). This
in turn implies that A(s∗) has unique (up to positive multiples) left and
right positive eigenvectors. Hence, since ẑ, ž ∈ Π+

K , we must have u(ẑ, s∗) =
u(ž, s∗) or, equivalently, ẑ = ž. But this contradicts ẑ �= ž, and therefore
completes the proof.

Now we are in a position to prove the max-min part of the saddle point
characterization.

Lemma 1.30. Let X ∈ XK be arbitrary. Then, for any F ∈ G(X),

max
z∈Π+

K

min
s∈RK

++

K∑
k=1

zkF

(
(Xs)k

sk

)
= F (ρ(X)) . (1.41)

Moreover,

w = arg max
z∈Π+

K

min
s∈RK

++

K∑
k=1

zkF

(
(Xs)k

sk

)
(1.42)

if and only if w = q ◦ p, which is a unique vector in Π+
K .

Proof. Proceeding as in the proof of Lemma 1.28 yields

U(z) := min
s∈RK

++

K∑
k=1

zkF

(
(Xs)k

sk

)
≤ min

s∈RK
++

max
1≤k≤K

F

(
(Xs)k

sk

)
= F (ρ(X))

for any z ∈ Π+
K . On the other hand, by Theorem 1.24,

min
s∈RK

++

K∑
k=1

wkF

(
(Xs)k

sk

)
=

K∑
k=1

wkF

(
(Xp)k

pk

)
= F (ρ(X))

and therefore w ∈ Π+
K is a maximizer of U . However, by Lemma 1.29, the

function U is strictly concave, and hence w = p ◦q is a unique maximizer in
Π+

K .

Now let us combine these results to obtain a saddle point characterization of
the Perron root ρ(X).

Theorem 1.31. Let X ∈ XK , F ∈ G(X) be given. Define G : RK
++×Π+

K → R

as

G(s, z) :=
K∑

k=1

zkF

(
(Xs)k

sk

)
. (1.43)

Then,

(a) the pair (p,w) ∈ RK
++ × Π+

K is a saddle point of G, and

F
(
ρ(X)
)

= min max
s∈RK

++ z∈Π+
K

G(s, z) = max min
z∈Π+

K s∈RK
++

G(s, z) , (1.44)

(b) p ∈ R++ is unique up to positive multiples,
(c) w = q ◦ p is a unique vector in Π+

K .
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1.3 Convexity of the Perron Root

So far we have exclusively dealt with the Perron root of a fixed irreducible ma-
trix. Beginning with this section, we shift our attention to a class of matrix-
valued functions that maps a given convex parameter set Ω ⊆ RK into a
subset of XK . This gives rise to the definition of a continuous function that
maps Ω into the set of positive reals such that the output values of this func-
tion are equal to the Perron roots of the corresponding irreducible matrices.
This map is of main interest in this section. To make our statements precise,
we need to introduce some new definitions.

1.3.1 Some Definitions

Let Qk ⊆ R, k = 1, . . . , K, be arbitrary nonempty open intervals on the real
line, and let the parameter set Ω be the Cartesian product of these intervals:

Ω := Q1 × · · · × QK ⊆ R
K . (1.45)

So Ω is an open convex set (Definition B.15). Suppose that {xk,l(ω) : Ω →
R+, 1 ≤ k, l ≤ K, ω ∈ Ω} is a collection of bounded continuous functions. We
write these functions in matrix form to obtain

X(ω) = (xk,l(ω))1≤k,l≤K

which is nothing but a matrix-valued function from Ω into NK , i.e., we have
X : Ω → NK .

Definition 1.32. We say that X : Ω → NK (X : Ω → XK) is nonnegative
(irreducible) on Ω if X(ω) ∈ NK (X(ω) ∈ XK) for every fixed ω ∈ Ω. The
set of all nonnegative (irreducible) matrix-valued functions on Ω is denoted
by NK(Ω) (XK(Ω) ⊂ NK(Ω)).

Unless otherwise stated, it is assumed that X ∈ XK(Ω). Obviously, for every
fixed ω ∈ Ω, ρ(X(ω)) is the Perron root of X(ω) ∈ XK . Hence, since the
spectral radius of any matrix varies continuously with the matrix entries
(Theorem A.6), ρ(X) : Ω → R++ is a continuous function. To avoid cumber-
some notation, alongside ρ(X(ω)), we define

λp(ω) := ρ(X(ω)), ω ∈ Ω .

Moreover, for every fixed ω ∈ Ω, λp(ω) is referred to as the Perron root
of X(ω) (or simply the Perron root). Throughout this chapter, ω̂ ∈ Ω and
ω̌ ∈ Ω are two arbitrary fixed parameter vectors, and

ω(µ) := (1 − µ)ω̂ + µω̌, µ ∈ [0, 1]

is their convex combination. Given any µ ∈ [0, 1], the Perron roots of
X(ω(µ)),X(ω̂) and X(ω̌) are designated by λp(ω(µ)), λp(ω̂) and λp(ω̌), re-
spectively.
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This section is devoted to the problem of convexity of the Perron root
λp(ω). More precisely, we are going to find out under which conditions on
the matrix entries the Perron root is a convex function on the parameter set
Ω. Interestingly, even if each entry of X(ω) is convex on Ω, simple examples
show that this property is in general not inherited by the Perron root. Indeed,
it is shown that for the Perron root to be convex for any choice of X ∈ XK(Ω),
it is necessary and sufficient that each entry of X(ω) is log-convex on Ω. For
the precise definition of log-convexity and some related results, the reader is
referred to Appendix B.3.

Remark 1.33. Note that there is a subtle discrepancy between the standard
definition of log-convexity and our definition. Indeed, as the logarithmic func-
tion is defined for positive reals, any log-convex function is by definition pos-
itive. In contrast, xk,l(ω) is nonnegative, and therefore may take zero value
on Ω. To avoid this problem, we consider the extended-value logarithm by
taking log 0 = −∞. Using this convention, the zero function xk,l(ω) ≡ 0 is
log-convex on Ω. Furthermore, if xk,l(ω) = 0 for some ω ∈ Ω and xk,l is
log-convex, then xk,l(ω) ≡ 0 for all ω ∈ Ω. The only reason for the extension
is that it enables us to refer to the identically zero function as a log-convex
function.

Throughout the book, we use the following definition, which is a straightfor-
ward extension of the above notion of log-convexity to matrix-valued func-
tions.

Definition 1.34. We say that X ∈ NK(Ω) is log-convex (on Ω) if and only
if for each 1 ≤ k, l ≤ K and all ω̂, ω̌ ∈ Ω, we have

xk,l(ω(µ)) ≤ xk,l(ω̂)1−µxk,l(ω̌)µ, µ ∈ (0, 1) . (1.46)

The set of all log-convex matrix-valued functions is denoted by LCK(Ω). In
particular, note that xk,l(ω) ≡ 0 for all ω ∈ Ω satisfies (1.46), and therefore
is log-convex on Ω.

If there is strict inequality in (1.46) for all ω̂, ω̌ ∈ Ω with ω̂ �= ω̌, then
the function xk,l is said to be strictly log-convex. If X(ω) is confined to
be irreducible on Ω, then LCK(Ω) should be considered to be a subset of
XK(Ω). Otherwise, we have LCK(Ω) ⊂ NK(Ω). It is important to notice that
log-convexity of X(ω) is an additional property on top of nonnegativity or
irreducibility. For instance, given any collection of nonnegative and nonzero
vectors {v(k,l) ∈ RK

+ , �= 0, 1 ≤ k, l ≤ K}, X : Ω → NK given by(
X(ω)

)
k,l

= xk,l(ω) = 〈v(k,l), ω〉

is nonnegative on Ω = RK
+ (X ∈ NK(RK

+ )) and irreducible on RK
++ (X ∈

XK(RK
++)). Yet X /∈ LCK(RK

+ ) and X /∈ LCK(RK
++). In contrast, if
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(
X(ω)

)
k,l

= xk,l(ω) = 〈v(k,l), eω〉

where eω = (eω1 , . . . , eωK ), then X ∈ LCK(RK) ⊂ XK(RK).
As far as applications in wireless networks are concerned, X(ω) usually

has the following special form

X(ω) = Γ(ω)V (1.47)

where V ∈ XK and

Γ(ω) := diag
(
γ1(ω1), . . . , γK(ωK)

)
(1.48)

with γk : Qk → R++ being a twice continuously differentiable and bijective
(and hence also strictly monotone) function. In fact, except for Sects. 1.3.2
and 1.3.3, we will restrict our attention to this special form.

In case of wireless applications, the matrix V in (1.47) may change over
time t ∈ R according to some stochastic process. Therefore, rather than with
X(ω), one has to deal with X : Ω × R → XK and λp : Ω × R → R++. In
order to capture the effect of these variations on the network performance,
it is often sufficient to assume that V is piecewise constant on R, that is,
given any k ∈ Z and T > 0, we have V(t) = V(k) for all t ∈ [kT, (k + 1)T )
where V(k) ∈ XK is a randomly chosen matrix. The probability distribution
of the random matrix on the set of irreducible matrices is usually not known.
However, in many cases, it is reasonable to assume that V = V(k) can take
on any value on XK . This gives rise to the following definition

XK,Γ(Ω) := {Γ(ω)V, ω ∈ Ω : V ∈ XK} ⊂ XK(Ω) . (1.49)

Note that X ∈ LCK(Ω) with X(ω) = Γ(ω)V and any fixed V ∈ NK if
and only if Γ ∈ LCK(Ω). Consequently, XK,Γ(Ω) ⊂ LCK(Ω) if and only if
Γ ∈ LCK(Ω).

Remark 1.35. The notation Γ ∈ LCK(Ω) means that γk : Qk → R++ is log-
convex for each 1 ≤ k ≤ K. The off-diagonal entries of Γ(ω) are zero, and
hence, by definition, log-convex. The notation X ∈ XK,Γ(Ω) should mean that
X(ω) = Γ(ω)V for some fixed γk : Qk → R++, 1 ≤ k ≤ K, and V ∈ XK .

1.3.2 Sufficient Conditions

In this section, we provide a sufficient condition for the Perron root λp(ω) to
be log-convex on Ω. Subsequently, we consider the issue of strict log-convexity.
The following result shows that if X ∈ LCK(Ω), then λp(ω) is log-convex on
Ω, and therefore also convex. In particular, this implies that if Γ ∈ LCK(Ω),
then the Perron root of X(ω) = Γ(ω)V is log-convex on Ω for all V ∈ XK .
The converse problem is considered in the next section.
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Theorem 1.36. If X ∈ LCK(Ω) ⊂ XK(Ω), then

λp(ω(µ)) ≤ λp(ω̂)1−µλp(ω̌)µ (1.50)

for all µ ∈ (0, 1) and all ω̂, ω̌ ∈ Ω.

Proof. Let µ ∈ (0, 1) be arbitrary and fixed. As X ∈ XK(Ω), it follows that
X(ω(µ)) ∈ XK , regardless of the choice of ω̂ ∈ Ω and ω̌ ∈ Ω. Thus, applying
Theorem 1.2 to λp(ω(µ)) yields

log λp(ω(µ)) = sup
A∈SK

( K∑
k,l=1

ukak,l log
xk,l(ω(µ))

ak,l

)

where SK := SK(X(ω(µ))) is defined by (1.3). Since the logarithmic function
is strictly increasing and X(ω) is log-convex on Ω, taking (1.46) into account
on the right-hand side of the equality above gives

log λp(ω(µ)) ≤ sup
A∈SK

( K∑
k,l=1

ukak,l log
xk,l(ω̂)1−µ xk,l(ω̌)µ

a1−µ
k,l aµ

k,l

)

= sup
A∈SK

(
(1 − µ)

K∑
k,l=1

ukak,l log
xk,l(ω̂)

ak,l

+ µ

K∑
k,l=1

ukak,l log
xk,l(ω̌)

ak,l

)
.

Now since sup(f + g) ≤ sup f + sup g for any functions f and g, one obtains

log λp(ω(µ)) ≤ (1 − µ) sup
A∈SK

( K∑
k,l=1

ukak,l log
xk,l(ω̂)

ak,l

)

+ µ sup
A∈SK

( K∑
k,l=1

ukak,l log
xk,l(ω̌)

ak,l

)

(a)
= (1 − µ) sup

A∈SK(X(ω̂))

( K∑
k,l=1

ukak,l log
xk,l(ω̂)

ak,l

)

+ µ sup
A∈SK(X(ω̌))

( K∑
k,l=1

ukak,l log
xk,l(ω̌)

ak,l

)
= (1 − µ) log λp(ω̂) + µ log λp(ω̌)

where (a) follows from the fact that the suprema are attained on SK(X(ω̂)) ⊆
SK and SK(X(ω̌)) ⊆ SK , respectively. The last equation is an application of
Corollary 1.3.
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The following result asserts that the Perron root λp(ω) is strictly log-convex
if at least one entry of X(ω) is strictly log-convex on Ω.

Theorem 1.37. Let X ∈ LCK(Ω) ⊂ XK(Ω) and suppose that at least one
entry of X(ω) is strictly log-convex function. Then,

λp(ω(µ)) < λp(ω̂)1−µλp(ω̌)µ, ω̂, ω̌ ∈ Ω (1.51)

for all µ ∈ (0, 1).

Proof. Let everything be as in the proof above, and, without loss of generality,
assume that

xk0,l0(ω(µ)) < xk0,l0(ω̂)1−µxk0,l0(ω̌)µ, µ ∈ (0, 1) (1.52)

for some 1 ≤ k0, l0 ≤ K. Then, due to strict monotonicity of log(x), x > 0,

logλp(ω(µ))

= sup
A∈SK

( K∑
k,l=1

ukak,l log
xk,l(ω(µ))

ak,l

)

≤ sup
A∈SK

(
(1 − µ)

K∑
k,l=1

k �=k0,l �=l0

ukak,l log
xk,l(ω̂)

ak,l

+ µ

K∑
k,l=1

k �=k0,l �=l0

ukak,l log
xk,l(ω̌)

ak,l
+ uk0ak0,l0 log

xk0,l0(ω(µ))
ak0,l0

)

(a)
< sup

A∈SK

(
(1 − µ)

K∑
k,l=1

ukak,l log
xk,l(ω̂)

ak,l
+ µ

K∑
k,l=1

ukak,l log
xk,l(ω̌)

ak,l

)

for all µ ∈ (0, 1) where (a) follows from (1.52). Now proceeding essentially as
above completes the proof.

Note that the condition of Theorem 1.37 is never satisfied when X ∈ XK(Ω)
is of the form X(ω) = Γ(ω)V since then the value of xk,l(ω) is independent of
ωj , j �= k. Therefore, xk,l(ω) cannot be strictly log-convex on Ω. In this case,
instead of demanding that at least one entry of X(ω) is strictly log-convex
on Ω, we could require that for every ω̂, ω̌ ∈ Ω, there is an entry xk,l(ω(µ))
of X(ω(µ)) that is a strictly log-convex function of µ ∈ (0, 1). Obviously, this
requirement is satisfied if γk is strictly log-convex on Qk for each 1 ≤ k ≤ K
(see also Theorem 2.12).

1.3.3 Convexity of the Feasibility Set

Definition 1.38 (Feasibility Set). For any X ∈ XK(Ω), there is an asso-
ciated set F ⊂ Ω, called the feasibility set, given by
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F :=
{
ω ∈ Ω : λp(ω) ≤ 1

}
. (1.53)

If there is no ω ∈ Ω such that λp(ω) ≤ 1, then F is an empty set.

In all that follows, it is assumed that F �= ∅, which excludes the trivial case
of F being an empty set. The importance of the feasibility set for wireless
networks will become obvious later in the second part of the book. The reader
is also referred to Chapter 2 where we will introduce the notion of a feasibility
set under some additional constraints.

Our main concern is the question whether or not the feasibility set is
a convex set. As the Perron root is a continuous map from Ω into the set
of reals, a sufficient condition for convexity of F immediately follows from
Theorem 1.44 if one considers the fact that the geometric mean is bounded
above by the arithmetic mean (see Appendix B.3). Indeed, for all µ ∈ (0, 1),
we have

λp(ω̂)1−µλp(ω̌)µ ≤ (1 − µ)λp(ω̂) + µλp(ω̌)
≤ max{λp(ω̂), λp(ω̌)}, ω̂, ω̌ ∈ Ω .

(1.54)

Thus, by Theorem 1.36, if X(ω) is log-convex on Ω and max{λp(ω̂), λp(ω̌)} ≤
1, then λp(ω(µ)) ≤ 1 for all µ ∈ (0, 1). In other words, if X(ω) is log-convex
on Ω, then

ω(µ) ∈ F, ω̂, ω̌ ∈ F

for all µ ∈ (0, 1). This is summarized in a corollary.

Corollary 1.39. If X ∈ LCK(Ω) ⊂ XK(Ω), then F ⊂ Ω is a convex set.

It is worth pointing out that the converse does not hold in general. To see
this, consider the following simple example.

Example 1.40. Let Ω = R2
++, and let

X(ω) =
(

a ω1 b ω1

b ω2 a ω2

)
, a ≥ 0, b > 0.

Clearly, X(ω) is irreducible for every ω ∈ R2
++ but not log-convex on R2

++.
The Perron root can be easily calculated to yield

λp(ω) =
1
2

(
a (ω1 + ω2) +

(
a2 (ω1 − ω2)

2 + 4 b2 ω1 ω2

)1/2
)
.

Thus, the set of all ω ∈ R2
++ satisfying λp(ω) = 1 is given by

ω2 = f(ω1) :=
1 − a ω1

(b2 − a2)ω1 + a
, ω1 ∈ (0, 1/a) .

Finally, the second derivative of f(x), x ∈ (0, 1/a), yields
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f ′′(x) =
2 b2(b − a)(a + b)
[(b2 − a2)x + a]3

.

It is easy to see that the denominator is positive for all x ∈ (0, 1/a). On the
other hand, the sign of the numerator is equal to the sign of b − a. Hence,
the feasibility set is not convex when b > a (f(x) convex on (0, 1/a)) and
becomes convex when a > b (f(x) concave on (0, 1/a)). If a = b, f(x) =
1/a − x, x ∈ (0, 1/a), is a line segment.

Sometimes it is desired to know whether F is a strictly convex set in the
following sense (we refer for instance to the discussion in Sect. 5.4).

Definition 1.41 (Strictly Convex Feasibility Set). F is said to be strictly
convex (or s-convex) if ω(µ) = (1−µ)ω̂ + µω̌ is interior to F (relative to Ω)
for all µ ∈ (0, 1) and ω̂, ω̌ ∈ ∂F where

∂F = {ω ∈ Ω : λp(ω) = 1} . (1.55)

Remark 1.42. For convenience, in what follows, “the boundary of F” always
refers to ∂F, even if F has boundary points other than those in ∂F. According
to this convention, F is strictly convex if any boundary point of F cannot be
written as a convex combination of two other points of F.

Although convexity is sufficient for most applications, strict convexity pro-
vides additional information about the feasibility region. In particular, if
F is strictly convex, then, by definition, there exists ω̃ ∈ F such that
λp(ω(µ)) < λp(ω̃) for any ω̂, ω̌ ∈ F. The following corollary is immediate.

Corollary 1.43. Let X ∈ LCK(Ω) ⊂ XK(Ω) with at least one entry being a
strictly log-convex function on Ω. Then, F is strictly convex.

As in case of Theorem 1.37, the condition of the corollary is never met when
X ∈ XK,Γ(Ω). However, the set is strictly convex if γk is strictly log-convex
on Qk for each 1 ≤ k ≤ K.

1.3.4 Necessary Conditions

Having proved that X ∈ LCK(Ω) is sufficient for λp(ω) to be both log-convex
and convex on Ω, now we turn our attention to a converse problem. More
precisely, we are asking whether X ∈ LCK(Ω) is necessary for λp(ω) to be
convex on Ω, regardless of the choice of X ∈ XK(Ω). In doing so, however, we
restrict X to be a member of XK,Γ(Ω) defined by (1.49). This is equivalent
to saying that X(ω) = Γ(ω)V for some V ∈ XK (see the remark below
(1.49)). As a consequence, the problem reduces to finding V ∈ XK such that
convexity of λp(ω) implies Γ ∈ LCK(Ω).

It is somewhat surprising that if λp(ω) is required to be convex for all
X ∈ XK,Γ(Ω) and all K > 1, then Γ(ω) must be log-convex on Ω.



1.3 Convexity of the Perron Root 29

Theorem 1.44. Let γk : Qk → R++ be twice continuously differentiable.
Suppose that λp(ω) is convex for all X ∈ XK,Γ(Ω) ⊂ XK(Ω) and all K > 1.
Then, Γ ∈ LCK(Ω).

Proof. Let Γ(ω) with γk : Qk → R++ be arbitrary, and let ωk ∈ Qk for
k = 2, . . . , K be fixed. We choose V ∈ XK to be

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1
1

γ2(ω2)
0 · · · 0 0

0 1
γ3(ω3)

· · · 0 0
...

...
. . .

...
...

0 0 · · · 1
γK(ωK) 0

⎞
⎟⎟⎟⎟⎟⎟⎠

so that X ∈ XK,Γ(Ω) takes the form

X(ω) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 γ(ω1)
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠ (1.56)

where γ ≡ γ1 : Q1 → R++ is twice continuously differentiable. We see that
the Perron root of (1.56) is equal to

f(ω1) =
(
γ(ω1)

)1/K
. (1.57)

So its second derivative yields

f ′′(ω1) =
( 1

K − 1) γ′(ω1)
2 + γ(ω1) γ′′(ω1)

K γ(ω1)
2− 1

K

which is nonnegative for all ω1 ∈ Q1 if and only if 0 ≤ ( 1
K − 1)γ′(ω1)

2 +
γ(ω1) γ′′(ω1) for all ω1 ∈ Q1. This, in turn, is true for all K > 1 if and only
if γ′(x)2 ≤ γ(x) γ′′(x) for all x ∈ Q1 or, equivalently, if and only if γ is a
log-convex function. Thus, Γ ∈ LCK(Ω) must hold.

Remark 1.45. Since log γ(x)1/K = 1/K log γ(x), x ∈ Q, we see that the Per-
ron root (1.57) of (1.56) is log-convex if and only if γ(x)γ′′(x) − (γ′(x))2 ≥
0, x ∈ Q. Therefore, given any fixed K > 1, the Perron root λp(ω) is log-
convex for all X ∈ XK,Γ(Ω) ⊂ XK(Ω) if and only if Γ ∈ LCK(Ω).

The theorem above asserts that Γ ∈ LCK(Ω) must hold if λp(ω) is required
to be convex for all X ∈ XK,Γ(Ω) and all K > 1. Thus, the theorem does not
say anything when X(ω) = Γ(ω)V is either fixed or confined to belong to
some subset of XK,Γ(Ω). In fact, it is shown in Sect. 1.4 that a less stringent
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property of Γ(ω) is sufficient for the Perron root to be convex on Ω if V ∈ XK

is limited to satisfy either V = VT (symmetry) or ∀x∈RKxT Vx ≥ 0 (positive
semidefinitness).

It is also important to notice that Theorem 1.44 holds even if each function
in X(ω) is positive for all ω ∈ Ω, i.e., if X ∈ XK,Γ(Ω) ⊂ PK(Ω). To see this,
define a positive matrix Xε(ω), ω ∈ Ω, as follows

Xε(ω) = X(ω) + ε11T , ε > 0

where X(ω) is given by (1.56). Furthermore, let

λp(ε, ω) = ρ(Xε(ω))

and suppose that γ : R → R++ in (1.56) is chosen such that the Perron root
is convex for any positive matrix. Thus, in a special case of λp(ε, ω) with
ε > 0, we have

λp(ε, ω(µ)) ≤ (1 − µ)λp(ε, ω̂) + µλp(ε, ω̌), ω̂, ω̌ ∈ Ω

for all µ ∈ (0, 1) and ε > 0. So, by continuity of λp(ε, ω) with respect to ε > 0
(Theorem A.6), one obtains

λp(ω(µ)) = lim
ε→0

λp(ε, ω(µ))

≤ (1 − µ) lim
ε→0

λp(ε, ω̂) + µ lim
ε→0

λp(ε, ω̌) = (1 − µ)λp(ω̂) + µλp(ω̌)

for all µ ∈ (0, ) where λp(ω) is given by (1.57). Consequently, since λp(ε, ω)
is convex for all ε > 0 (by assumption), so also is λp(ω). However, by the
proof of Theorem 1.44, λp(ω) given by (1.57) is convex for all K > 1 if and
only if γ is log-convex. We summarize this in an observation.

Observation 1.46. If λp(ω) is convex on Ω for all X ∈ XK,Γ(Ω) ⊂ PK(Ω)
and all K > 1, then Γ ∈ LCK(Ω).

A remarkable fact about these results is that although λp(ω) is required to
be convex, we arrive at log-convexity of Γ(ω), which is significantly stronger
than convexity. Combining Theorem 1.36 and Theorem 1.44 shows that the
following statements are equivalent (if γ is twice continuously differentiable):

(i) λp(ω) is convex for all K > 1 and all X ∈ XK,Γ(Ω).
(ii) λp(ω) is log-convex for all K > 1 and all X ∈ XK,Γ(Ω).

1.4 Special Classes of Matrices

We continue the analysis with X(ω) of the form X(ω) = Γ(ω)V for some
V ∈ XK . For simplicity, it is assumed that
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γ(x) := γ1(x) = · · · = γK(x), x ∈ Q

where γ : Q → R++ is a twice continuously differentiable and bijective func-
tion. Hence, throughout this section, Ω = QK . It is emphasized, however,
that this assumption does not impact the generality of the analysis. As be-
fore, we use F and λp(ω) to denote the feasibility set and the Perron root of
Γ(ω)V for some ω ∈ Ω, respectively.

Obviously, if γ : Q → R++ is log-convex, then X ∈ LCK(Ω). Conse-
quently, by Theorem 1.36, if γ(x) is log-convex, the Perron root λp(ω) is a
log-convex function of the parameter vector ω. By Sect. 1.44, it can be in-
ferred that log-convexity of γ is necessary when the Perron root is required to
be convex on Ω = QK for all V ∈ XK and all K > 1. In this section, we put
some restrictions on V ∈ XK . In particular, it is shown that the log-convexity
requirement can be relaxed to a less stringent requirement when the matrix
V ∈ XK is confined to be either symmetric or positive semidefinite.

1.4.1 Symmetric Matrices

Recall that a square matrix A ∈ RK×K is said to be symmetric if A = AT

(see also Appendix A.3.2). The following theorem provides a necessary and
sufficient condition for the Perron root to be convex on Ω = QK for all K > 1
and all X ∈ Xs

K,Γ(Ω) where

Xs
K,Γ(Ω) := {Γ(ω)V, ω ∈ Ω : V ∈ XK ,V = VT } .

Theorem 1.47. Let fγ : Q2 → R++ be given by

fγ(x, y) =
√

γ(x)γ(y).

Then, the Perron root λp(ω) is convex on Ω = QK for all X ∈ Xs
K,Γ(Ω) and

all K > 1 if and only if fγ is convex on Q2.

Proof. The necessity is easily verified by considering K = 2 and X(ω) =
Γ(ω)V with V =

( 0 �
� 0

) ∈ XK . In this case, we have

λp(ω) = �
√

γ(ω1)γ(ω2)

from which the necessary condition immediately follows. To prove the con-
verse, let X ∈ Xs

K,Γ(Ω) be arbitrary and note that due to the symmetry,

λp(ω(µ)) = ρ(W(µ)), ω̂, ω̌ ∈ QK , µ ∈ [0, 1]

where W(µ) =
(
wk,l(µ)

)
:= Γ

1
2 (ω(µ))VΓ

1
2 (ω(µ)). The entries of W(µ) are

wk,l(µ) =
√

γ(ωk(µ))vk,l

√
γ(ωl(µ)) = fγ

(
ωk(µ), ωl(µ)

)
vk,l.
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Hence, by the convexity of fγ ,

wk,l(µ) ≤ (1 − µ)fγ(ω̂k, ω̂l)vk,l + µfγ(ω̌k, ω̌l)vk,l

for all µ ∈ (0, 1). Now due the monotonicity of the Perron root (Theorem
A.19), one obtains

λp(ω(µ)) ≤ ρ
(
(1 − µ)Γ

1
2 (ω̂)VΓ

1
2 (ω̂) + µΓ

1
2 (ω̌)VΓ

1
2 (ω̌)
)

≤ (1 − µ)ρ(Γ
1
2 (ω̂)VΓ

1
2 (ω̂)) + µρ(Γ

1
2 (ω̌)VΓ

1
2 (ω̌))

= (1 − µ)λp(ω̂) + µλp(ω̌)

where the second inequality follows from the fact that the spectral radius is
convex on the set of symmetric matrices (Theorem A.15).

1.4.2 Symmetric Positive Semidefinite Matrices

Now let us assume that V is confined to be a symmetric positive semidefinite
matrix (Definition A.16). Hence, X ∈ Xp

K,Γ(Ω) where Ω = QK and

Xp
K,Γ(Ω) :=

{
Γ(ω)V, ω ∈ Ω : V ∈ XK ,V = VT , ∀x∈RKxT Vx ≥ 0

}
.

Note that V ∈ XK is positive semidefinite if, roughly speaking, its diagonal
entries are large enough when compared with the off-diagonal entries. It turns
out that λp(ω) is convex on Ω if X ∈ Xp

K,Γ(Ω) and γ : Q → R++ is a convex
function.

Theorem 1.48. Suppose that X ∈ Xp
K,Γ(Ω) such that γ : Q → R++ is any

continuous convex function. Then, λp(ω) is convex on Ω = QK .

Proof. Let X(ω) = Γ(ω)V ∈ Xp
K,Γ(Ω) be arbitrary. Thus, as V ∈ XK is

symmetric positive semidefinite, we can write V = AAT with A = UΛ
1
2

where U is orthogonal (Definition A.12) and Λ is a real diagonal matrix of
the eigenvalues of V. Furthermore,

λp(ω) = λmax(Γ(ω)
1
2 VΓ(ω)

1
2 ) = λmax(Γ(ω)

1
2 AAT Γ(ω)

1
2 )

= λmax(AT Γ(ω)
1
2 Γ(ω)

1
2 A)

(1.58)

where the largest eigenvalue λmax(Γ(ω)
1
2 VΓ(ω)

1
2 ) of Γ(ω)

1
2 VΓ(ω)

1
2 is equal

to the induced squared matrix 2-norm of Γ(ω)
1
2 A (see the definition of in-

duced matrix norms in Appendix A.2). Therefore,

λp(ω) = max
‖v‖2=1

vT AT Γ(ω)
1
2 Γ(ω)

1
2 Av = max

‖v‖2=1
‖Γ(ω)

1
2 Av‖2

2 .

The kth element of Γ(ω)
1
2 Av is equal to (Γ(ω)

1
2 Av)k =

√
γk

∑
l ak,lvl. So
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‖Γ(ω)
1
2 Av‖2

2 =
K∑

k=1

γ(ωk)
∣∣∣ K∑
l=1

ak,lvl

∣∣∣2.
Now considering both the convexity of γ and the fact that all sum terms in
the equation above are positive yields

λp(ω(µ)) = max
‖v‖2=1

‖Γ(ω(µ))
1
2 Av‖2

2

≤ max
‖v‖2=1

(
(1 − µ)‖Γ(ω̂)

1
2 Av‖2

2 +µ‖Γ(ω̌)
1
2 Av‖2

2

)
≤ (1 − µ) max

‖v‖2=1
‖Γ(ω̂)

1
2 Av‖2

2 + µ max
‖v‖2=1

‖Γ(ω̌)
1
2 Av‖2

2

= (1 − µ)λp(ω̂) + µλp(ω̌), ω̂, ω̌ ∈ QK

for all µ ∈ (0, 1), where the following identities

λp(ω̂) = max
‖v‖2=1

‖Γ(ω̂)
1
2 Av‖2

2 λp(ω̌) = max
‖v‖2=1

‖Γ(ω̌)
1
2 Av‖2

2

were used in the last step.

An immediate consequence of the theorem is the following.

Corollary 1.49. If X ∈ Xp
K,Γ(Ω) and γ : Q → R++ is any convex function,

then F is a convex set.

Interestingly, the feasibility set can be written as the intersection of certain
(in general) nonconvex sets. To see this, note that, for any X ∈ Xp

K,Γ(Ω) with
Ω = QK , one has

F = {ω ∈ QK : λmax

(
Γ

1
2 (ω)VΓ

1
2 (ω)
) ≤ 1}.

Thus, since λmax

(
Γ

1
2 (ω)VΓ

1
2 (ω)
) ≤ 1 if and only if λmin(Γ−1(ω) − V) ≥ 0

or, equivalently, if and only if

0 ≤ zT
(
Γ−1(ω) − V

)
z (1.59)

for all z ∈ RK , we can write F =
⋂

z∈RK M(z) where

M(z) := {ω ∈ QK : zT
(
Γ−1(ω) − V

)
z ≥ 0}.

Hence, given any symmetric positive semidefinite matrix V ∈ XK , the
feasibility set (associated with Γ(ω)V) is equal to the intersection of the sets
M(z) with respect to all z ∈ RK . It is interesting to see that although M(z) is
not convex in general, the intersection of these sets is a convex set, provided
that γ is a convex function. This is illustrated in Fig. 1.1 for γ(x) = x, x > 0,
in which case the complement of M(z) in QK denoted by Mc(z) is a convex set.
This immediately follows from (1.59) whose right-hand side can be written
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ω2

ω1

F

zT (Γ−1(ω) −V)z = 0

Mc(z)

Fig. 1.1. The feasibility set F for some X ∈ Xp
K,Γ(Ω) with γ(x) = x, x > 0, K = 2

and Ω = Q2.

as

zT Γ−1(ω)z − zT Vz =
K∑

k=1

|zk|2
γ(ωk)

− zT Vz.

Clearly, this function is convex if γ(x) = x, x > 0. Thus Mc(z) as the sublevel
set of this function with respect to the zero value must be a convex set for any
fixed z ∈ RK . The linear case γ(x) = x, x > 0, is of great practical interest,
and hence is separately considered in the next section.

1.5 The Perron Root Under the Linear Mapping

In this section, we further proceed with matrix-valued functions X of the
form X(ω) = Γ(ω)V where Γ(ω) = diag(γ(ω1), . . . , γ(ωK)). However, in
contrast to the previous analysis, it is assumed that trace(V) = 0. Formally,
this is written as

X ∈ X0
K,Γ(Ω) := {Γ(ω)V, ω ∈ Ω : V ∈ XK , trace(V) = 0} .

So, in particular, note that V cannot be positive semidefinite.
Under this assumption, we consider the important special case of the

linear function: γ(x) = x, x > 0. Therefore, in this section, Ω = QK = RK
++

and
Γ(ω) = diag(ω1, . . . , ωK) .

Obviously, the linear function is not log-convex so that Theorem 1.36 does
not apply in this case. In fact, if K = 2 and V =

( 0 �
� 0

)
, the Perron root of

X(ω) = diag(ω)V can be easily found to be λp(ω) = �
√

ω1ω2. Consequently,
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instead of being convex, λp(ω) turns out to be concave on R2
++ for all X ∈

X0
2,Γ(Ω). This observation might lead one to think that λp(ω) is concave in

general, that is for all X ∈ X0
K,Γ(Ω) and all K > 1. Further results that

support this conjecture have been proved in Sect. 1.2.1 where it is shown
that the Perron root is concave on some subsets of irreducible matrices.

Observe that if λp(ω) was concave on RK
++, then not F but its complement

in RK
++

Fc = QK \ F = R
K
++ \ F (1.60)

would be a convex set. If true, this result would have an interesting conse-
quence for optimal scheduling policies for wireless networks (see Sect. 5.4.3).
In Sect. 1.5.2, however, we will disprove the conjecture by showing that if
γ(x) = x, x > 0, there exists K > 3 and X ∈ XK,Γ(Ω) such that λp(ω) is
not concave. First, though, we will prove two conditions on the feasibility of
the parameter vector ω ∈ RK

++. These results provide insight into the mutual
dependence between distinct entries of ω ∈ F.

1.5.1 Some Bounds

We exploit the bound in (1.10) to prove a subset and a superset of F. The
following theorem provides a sufficient condition for ω to be a member of F.

Theorem 1.50. If

f(ω) =
K∑

k=1

ωkρ(V)
1 + ωkρ(V)

≤ 1 (1.61)

then ω ∈ F.

Proof. Let Y(ω) = (yk,l) be given by yk,l = ωk(1 − δk−l), where δl denotes
the Kronecker delta. Note that Y(ω) is irreducible for all ω ∈ RK

++. Let
p ∈ ΠK be the right Perron eigenvector of Y(ω). From ‖p‖1 = 1 and

ρ(Y(ω))pk =
(
Y(ω)p

)
k

= ωk

K∑
l=1
l �=k

pl = ωk

( K∑
l=1

pl − pk

)
= ωk(1 − pk)

we have pk = ωk

ρ(Y(ω))+ωk
, 1 ≤ k ≤ K. Hence,

K∑
k=1

pk =
K∑

k=1

ωk

ρ(Y(ω)) + ωk
= 1. (1.62)

So, by Corollary 1.5 and Γ(ω)V = diag(ω)V = Y(ω) ◦ V,

λp(ω) = ρ(D(ω)V) = ρ(Y(ω) ◦ V) ≤ ρ
(
Y(ω)

)
ρ(V).

Combining this with (1.62) yields
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1 =
K∑

k=1

ωk

ρ(Y(ω)) + ωk
≤

K∑
k=1

ωk

λp(ω)
ρ(V) + ωk

=
K∑

k=1

ωkρ(V)
λp(ω) + ωkρ(V)

.

Thus, if (1.61) holds, then

K∑
k=1

ωkρ(V)
1 + ωkρ(V)

≤ 1 ≤
K∑

k=1

ωkρ(V)
λp(ω) + ωkρ(V)

or, equivalently, λp(ω) ≤ 1.

The function f(ω) in (1.61) defines a set Fin ⊆ F given by

Fin := {ω ∈ R
K
++ : f(ω) ≤ 1} .

It may be easily verified that for any V ∈ XK , f(ω) is strict concave. Con-
sequently, Fc

in = RK
++ \ Fin is a convex set. Now we use (1.10) to prove a

necessary condition for the feasibility of ω ∈ QK .

Theorem 1.51. If ω ∈ F, then

1 ≤ g(ω) =
K∑

k=1

1
1 + ρ(V)ωk

. (1.63)

Proof. Let Y(ω) be as in the proof above, and let 1/ω be defined as 1/ω =
(1/ω1, . . . , 1/ωK) > 0. Since Γ−1(ω)V = (diag(ω))−1V = Y(1/ω) ◦ V,

ρ(V) = ρ
(
Y(1/ω) ◦ V diag(ω)

)
.

Thus, by Corollary 1.5 and the fact that ρ(Vdiag(ω)) = ρ(diag(ω)V) =
λp(ω), log ρ(V) ≤ log ρ(Y(1/ω)) + log λp(ω). Since ω ∈ F or, equivalently,
λp(ω) ≤ 1, this implies that

ρ(V) ≤ ρ(Y(1/ω)) . (1.64)

Now note that (Y(1/ω))k,l = 1
ωk

(1 − δk−l). Hence, proceeding essentially as
in the foregoing proof yields

p̂k =
1

1 + ωkρ(Y(1/ω))

where p̂ ∈ ΠK is the right Perron eigenvector of Y(1/ω). Thus,

1 =
K∑

k=1

p̂k =
K∑

k=1

1
1 + ωkρ(Y(1/ω))

and the theorem follows from (1.64).
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The function g(ω) in (1.63) defines a superset Fout of F given by

Fout := {ω ∈ R
K
++ : 1 ≤ g(ω)}.

For any fixed V ∈ XK , the function g(ω) in (1.63) is strictly convex so that
Fc

out = R
K
++ \ Fout is a convex set.

Summarizing, we can state that Fin ⊆ F ⊆ Fout and

Fc
out ⊆ Fc ⊆ Fc

in

where both Fc
in and Fc

out are convex sets. Thus, Fc is embedded into two
convex sets. Furthermore, if K = 2, the implicit function g(ω) = 1 is given
by ρ(V) = 1/

√
ω1ω2. Consequently, in the two-dimensional case, Fc = Fc

out

is a convex set.
Finally we use Theorem 1.2 as a starting point to prove a necessary con-

dition on ω ∈ F. To this end, let Â ∈ SK(V) be a stochastic matrix so
that

log ρ(V) =
K∑

k,l=1

ûkâk,l log
(

vk,l

âk,l

)
(1.65)

where û = (û1, . . . , ûK) ∈ ΠK is the left Perron eigenvector of Â. First we
consider the following lemma.

Lemma 1.52. Suppose that V is irreducible. Let Â and û be as above. Then,
we have ûk = yk · xk, 1 ≤ k ≤ K, where y and x with yT x = 1 are left and
right positive eigenvectors of V, respectively.

Proof. By Theorem 1.2, Â is

(Â)k,l = âk,l =
vk,lxl

ρ(V)xk
.

By definition, we have Â
T
û = û and x > 0. Combining this with the equation

above yields

ûk =
K∑

l=1

âl,kûl =
1

ρ(V)

K∑
l=1

vl,kxk

xl
ûl, 1 ≤ k ≤ K

or, equivalently,

ρ(V) · ûk

xk
=

K∑
k=1

vl,k
ûl

xl
, 1 ≤ k ≤ K.

Hence, the left eigenvectors are of the form yk = ûk

xk
. Since

∑
k ûk = 1, we

have yT x = 1.
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Now we are in a position to prove the announced necessary condition. To keep
the result as general as possible, we allow γ : Q → RK

++ to be any continuous
function.

Theorem 1.53. Let V ∈ XK . If ω ∈ F, then we must have

K∏
k=1

(
γ(ωk)

)xkyk ≤ 1
ρ(V)

(1.66)

where, as in Lemma 1.52, y and x are left and right positive eigenvectors of
V, respectively.

Proof. Let Â and û be defined by (1.65). Substituting û and Â into (1.4)
yields

log λp(ω) = log ρ(Γ(ω)V) ≥
K∑

k,l=1

ûkâk,l log
vk,l

âk,l
+

K∑
k,l=1

ûkâk,l log γ(ωk) .

By (1.65), the first term on the right-hand side is equal to log ρ(V) so that

log λp(ω) ≥ log ρ(V) +
K∑

k,l=1

ûkâk,l log γ(ωk) = log ρ(V) +
K∑

k=1

ûk log γ(ωk)

= log ρ(V) + log
K∏

k=1

(γ(ωk))ûk

where we used the fact that Â is (row) stochastic. Hence, by Lemma 1.52,

K∏
k=1

(γ(ωk))xkyk ≤ λp(ω)
ρ(V)

.

But, if ω ∈ F, then λp(ω) ≤ 1, and the theorem follows.

Obviously, if γ(x) = x, x > 0, the bound reduces to
∏K

k=1(ωk)xkyk ≤ 1
ρ(V) .

1.5.2 Disproof of the Conjecture

Now we disprove the conjecture stated at the beginning of this section. More
precisely, it is shown that there exists X ∈ X0

K,Γ(Ω) with Ω = RK
++, K > 1,

and γ(x) = x, x > 0, such that ω(µ) = (1−µ)ω̂+µω̌ /∈ Fc for some µ ∈ (0, 1)
and ω̂, ω̌ ∈ Fc with ω̂ �= ω̌.

First suppose that the conjecture is true, that is, Fc
γ is a convex set. This

is equivalent to saying that

λp(ω(µ)) ≥ 1 (1.67)
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for all µ ∈ (0, 1) and all ω̂, ω̌ ∈ RK
++ with

λp(ω̂) = λp(ω̌) = 1 . (1.68)

In words, if both ω̂ and ω̌ lie on the boundary ∂F of F (Definition 1.41 and
the remark below), then the entire straight line connecting them must be
either outside of the feasibility set or must entirely lie on ∂F.

First we provide a necessary and sufficient condition for (1.67) with (1.68)
to be satisfied. Note that in the following lemma, X is not necessarily a
member of X0

K,Γ(Ω).

Lemma 1.54. Let γ(x) = x, x > 0, and let X ∈ XK,Γ(Ω) be arbitrary. Then,
we have (1.67) with (1.68) if and only if λp(ω) is concave on Ω = RK

++, i.e.,
if and only if

λp(ω(µ)) ≥ (1 − µ)λp(ω̂) + µλp(ω̌)

for all µ ∈ (0, 1) and ω̂, ω̌ ∈ R
K
++.

Proof. If the spectral radius is concave, then (1.67) with (1.68) immediately
follows. So, we only need to prove the converse. To this end, let ω̂, ω̌ ∈ RK

++

be arbitrary, and let ŝ, š ∈ RK
++ be defined as

diag(ŝ)V =
1

λp(ω̂)
diag(ω̂)V diag(š)V =

1
λp(ω̌)

diag(ω̌)V .

Consequently, both λp(ŝ) = ρ(diag(ŝ)V) and λp(š) = ρ(diag(š)V) satisfy
(1.68). Let a, b > 0 be chosen such that 0 < 1 − µ = a

a+b < 1 and 0 < µ =
b

a+b < 1 for µ ∈ (0, 1). Substituting this into the left-hand side of (1.67)
yields

λp(aŝ + bš) ≥ a + b (1.69)

where we used the fact that diag(aŝ + bš)V = a diag(ŝ)V + b diag(š)V and
λp(cx) = cλp(x) for any c > 0 and x ∈ RK

++. The inequality above holds for
all a, b > 0. Now define ã, b̃ > 0 as a = ãλp(ω̂) and b = b̃λp(ω̌). Combining
this with (1.69) and λp(ω) = ρ(diag(ω)V) gives

λp

(
ãλp(ω̂)ŝ + b̃λp(ω̌)š

)
= ρ
(
ãλp(ω̂)diag(ŝ)V + b̃λp(ω̌)diag(š)V

)
= ρ
(
ã diag(ω̂)V + b̃ diag(ω̌)V

)
= λp

(
ã ω̂ + b̃ ω̌

) ≥ ãλp

(
ω̂) + b̃λp

(
ω̌)

for all ã, b̃ > 0. In particular, this must hold for ã = 1 − α and b̃ = α with
α ∈ (0, 1), in which case concavity of the spectral radius follows.

It is worth pointing out that if

λp(ω(µ)) ≥ min{λp(ω̂), λp(ω̌)}
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for all µ ∈ (0, 1) and all ω̂, ω̌ ∈ RK
++, then we have (1.67) with (1.68). Thus,

by Lemma 1.54 and the fact that every concave function is quasiconcave (for
the definition of quasiconcave functions, the reader is referred to [11]), we
obtain the following corollary.

Corollary 1.55. Let γ(x) = x, x > 0. Then, the following statements are
equivalent.

(a) Fc = RK
++ \ F is a convex set for all X ∈ XK,Γ(Ω) and all K > 1.

(b) The Perron root is concave on RK
++.

(c) The Perron root is quasiconcave on RK
++.

Now we prove that if γ(x) = x, x > 0, then the Perron root is not concave in
general, thereby disproving the conjecture.

Lemma 1.56. Let γ(x) = x, x > 0. Then, there exist K > 1,X ∈ X0
K,Γ(Ω)

and ω̂, ω̌ ∈ Ω = RK
++ such that

λp(ω(µ)) < (1 − µ)λp(ω̂) + µλp(ω̌) (1.70)

for some µ ∈ (0, 1).

Proof. For an arbitrary c > 0, let Vc =
(

0 c
c 0

) ≥ 0. Furthermore, define

V =
(
Vc 0
Ṽ Vc

)
∈ R

4×4
+

where Ṽ ∈ R
2×2
+ is an arbitrary nonnegative matrix and 0 ∈ R

2×2
+ denotes

the zero matrix. Furthermore let ω̂ = (2, 2, 1, 1) and ω̌ = (1, 1, 2, 2) from
which we get

λp(ω̂) = ρ(diag(ω̂)V) = max{2ρ(Vc), ρ(Vc)} = 2 c

λp(ω̌) = ρ(diag(ω̌)V) = max{ρ(Vc), 2ρ(Vc)} = 2 c .

Thus, λp(ω(µ)) = ρ(diag(ω(µ))V) yields

λp(ω(µ)) = max
{
(2(1 − µ) + µ)ρ(Vc), ((1 − µ) + 2µ)ρ(Vc)

}
= c max{2 − µ, 1 + µ}
< 2 c = (1 − µ)λp(ω̂) + µλp(ω̌), µ ∈ (0, 1) .

(1.71)

Note that since V defined above is reducible, so also is diag(ω)V. Therefore,
it remains to show that there exists X ∈ X0

4,Γ(R4
++) for which (1.70) holds.

To this end, suppose that ∆ ∈ R
4×4
+ is given by (∆)k,l = 1 − δk−l, where δi

is the Kronecker delta. Let Xε(ω) = diag(ω)Vε where Vε = V + ε∆, ε > 0.
Obviously, Xε(ω) with trace(Xε(ω)) = 0 is irreducible for all ω > 0 and
ε > 0. Let λp(ε, ω) be the Perron root of diag(ω)Vε and note that

lim
ε→0

λp(ε, ω(µ)) = λp(ω(µ))
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for any fixed µ ∈ (0, 1). Thus, since the Perron root is continuous in ε > 0,
it follows from (1.71) that there exist ε > 0 (and hence an irreducible matrix
Vε) and µ ∈ (0, 1) such that

λp(ε, ω(µ)) < (1 − µ)λp(ε, ω̂) + µλp(ε, ω̌) .

This completes the proof.

Note that the construction of a counterexample in the proof of Lemma 1.56
requires two traceless irreducible matrices of order at least 2. Thus the proof
does not work for K < 4. Also note that since ρ(X) = limn→+∞ ‖Xn‖1/n for
any matrix norm (Theorem A.10) and (X + Y)n ≥ Xn + Yn with n ≥ 1 for
any X,Y ∈ NK , we actually have ρ(X+Y) ≥ max{ρ(X), ρ(Y)}. In a special
case when X = (1 − µ)A and Y = µB for some A,B ∈ XK , one obtains

ρ((1 − µ)A + µB) ≥ max{(1 − µ)ρ(A), µρ(B)} .

The counterexample in the proof is constructed in such a way that the lower
bound is attained for all µ ∈ [0, 1].

We complete this section by summarizing Lemma 1.54 and Lemma 1.56
in a theorem.

Theorem 1.57. Suppose that γ(x) = x, x > 0. Then, Fc is not a convex set
in general, i.e., there exist K > 1,X ∈ X0

K,Γ(Ω) and ω̂, ω̌ ∈ Fc such that

ω(µ) = (1 − µ)ω̂ + µω̌ /∈ Fc

for some µ ∈ (0, 1).

1.6 Some Remarks on Arbitrary Nonnegative Matrices

We finish this chapter by making some remarks on reducible matrices. The
weak form of the Perron–Frobenius theorem (Theorem A.30) ensures that the
spectral radius of any nonnegative matrix is an eigenvalue of the matrix and
that associated eigenvectors are nonnegative. So, in contrast to irreducible
matrices, there is no assertion regarding the uniqueness and positivity prop-
erties. For this reason, it is not clear which of the presented results carry over
to nonnegative matrices. On the other hand, the proof of Theorem A.30 is
based on the recognition that any nonnegative matrix can always be written
as a limit of a sequence of positive matrices (and hence irreducible ones).
Therefore, due to continuity of the spectral radius as a function of the ma-
trix entries, it is justified to conjecture that some of the results remain valid
(maybe in a milder form) in case of reducible matrices.

First we show that the main results of Sects. 1.3–1.5 hold for general
nonnegative matrices. In fact, this extension is straightforward. In contrast,
the problem of extending the results of Sects. 1.2.3 and 1.2.4 to nonnegative
matrices is somewhat tricky. This problem is considered in Sect. 1.6.2.
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1.6.1 Log-Convexity of the Spectral Radius

Suppose that X ≥ 0 is reducible. Then, by Definition A.21 and the fact that
interchanging columns and rows of any square matrix does not affect the
spectral radius of the matrix, we can assume that X is of the following form
[4] (see also Appendix A.4.3)

X =

⎛
⎜⎜⎝

X(1) 0 · · · 0
X(2,1) X(2) . . . 0
· · · · · · · · · · · ·

X(s,1) X(s,2) . . . X(s)

⎞
⎟⎟⎠ (1.72)

where X(1), . . . ,X(s) ≥ 0 are either nonnegative irreducible or zero square
matrices. Without loss of generality, let us assume that all diagonal blocks
are irreducible. Obviously, if X is irreducible, then s = 1 and X = X(1). We
refer to (1.72) as the normal form of the matrix X ∈ NK .

An examination of (1.72) reveals that the spectral radius of X can be
written as [4]

ρ(X) = max{ρ(X(n)) : 1 ≤ n ≤ s} (1.73)

where ρ(X(n)) is used to denote the Perron root of the nth block X(n). By
Theorem A.30, ρ(X) is an eigenvalue of X but not necessarily a simple one
(Definition A.5), which immediately follows from (1.73). Obviously, ρ(X(n))
depends only on the entries of X(n), which in turn implies that, for any
matrix-valued function X : Ω → NK , ρ(X(n)(ω)) depends on the parameter
vector ω only through the entries of the nth diagonal block. As a consequence,
we can apply Theorem 1.36 to deduce that the Perron root of each diagonal
block is log-convex on Ω if X ∈ LCK(Ω) ⊂ NK(Ω). Now since log-convexity
is closed under pointwise maximum [11] (see also Sect. 2.3.1), we can make
the following two observations.

Observation 1.58. Let X ∈ LCK(Ω) ⊂ NK(Ω) be arbitrary. Then, ρ(X(ω))
is log-convex on Ω.

Observation 1.59. Let X ∈ LCK(Ω) ⊂ NK(Ω) be arbitrary. Then,

F = {ω ∈ Ω : ρ(X(ω)) ≤ 1}

is a convex set.

We also see that the irreducibility property is not necessary for the results
of Sect. 1.4 to hold. The converse results of Sect. 1.3.4 extend to arbitrary
nonnegative matrices as well. The same holds for the results of Sect. 1.5.2.
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1.6.2 Characterization of the Spectral Radius

This section aims at extending the results of Sects. 1.2.3 and 1.2.4 to reducible
matrices. We will prove that the characterizations of the Perron Root, and in
particular the Collatz–Wielandt-type saddle point characterization, remain
valid for some subclass of nonnegative matrices that is larger than XK . How-
ever, it will also be apparent that such characterizations are not applicable
to general nonnegative matrices.

It was mentioned above that in the case of nonnegative reducible matrices,
ρ(X) ∈ σ(X) does not need to be a simple eigenvalue. Moreover, associated
left and right eigenvectors are not necessarily unique up to positive multiples.
This prompts us to introduce the notion of the eigenmanifold EK of X defined
to be

EK(X) := {(q,p) ∈ R
K
+ × R

K
+ : Xp = ρ(X)p,XT q = ρ(X)q,qT p = 1} .

Furthermore, we define E+
K(X) := EK(X) ∩ (RK

++ × RK
++), which of course

may be an empty set if X is reducible. Note that the notation (q,p) ∈
EK(X) means that q and p are nonnegative left and right eigenvectors of X
associated with the same eigenvalue, which is equal to ρ(X).

In what follows, given X ∈ NK , the function F : R++ → R is assumed
to belong to the function class G(X) specified in Definition 1.22. For the
function H : RK

++ → R defined by (1.30) to be well defined, the matrix X is
assumed to be confined to the set N+

K defined to be

N+
K := {X ∈ NK : ∃s∈RK

++
Xs > 0} .

Since X is nonnegative, we see that if Xs > 0 holds for some arbitrary
s ∈ R

K
++, then we must have Xs > 0 for all s ∈ R

K
++. Obviously, for any

K > 1, there holds XK ⊆ N+
K ⊆ NK . The set N+

K is however a proper subset
of NK for any K > 1 (N+

K ⊂ NK) since any nonnegative matrix with only
one positive entry is not a member of N+

K . On the other hand, for all K > 1,
N+

K is a proper superset of XK (XK ⊂ N+
K). This is because for all K > 1,

there exists a nonnegative (row) stochastic matrix having one column with
all entries being equal to zero. Clearly, such matrices are not irreducible but
they belong to N+

K . Finally, we point out that since X ∈ N+
K is not necessarily

irreducible, the second condition of Definition 1.22 must be modified to read
as follows: For any z ∈ Π+

K , the function H : RK
++ → R defined by (1.30) has

a finite infimum on RK
++. If the infimum is attained for some s∗ ∈ RK

++, then
every local minimum is global, and (1.31) provides a necessary and sufficient
condition for characterizing s∗. So the modification takes into account the
possibility that H may have no minimum on RK

++.
First we are going to extend Theorem 1.24. As there is no guarantee that

X has a positive eigenvector, it is clear that the theorem cannot hold in this
form for general nonnegative matrices. The problem is that the equality in
(1.32) cannot hold with s = p if p has at least one zero element. On the
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other hand, however, we see from the proof of Theorem A.30 that X can be
written as a limit of positive matrices, each of which has positive left and
right eigenvectors. So one may expect that the bound in (1.32) holds and
can be approached arbitrarily closely. Below this intuitive approach is made
precise and rigorous.

Theorem 1.60. Let X ∈ N+
K and F ∈ G(X) be arbitrary, and let w = p◦q ∈

ΠK for some (q,p) ∈ EK(X). Then,

inf
s∈RK

++

K∑
k=1

wkF

(
(Xs)k

sk

)
= F (ρ(X)). (1.74)

Moreover, if X has a positive right eigenvector p, the infimum is attained for
s = p > 0.

Proof. Let X ∈ N+
K be arbitrary, and let Xε = X+ ε11T for all ε ≥ 0. Hence,

Xε ∈ XK for all ε > 0, and

(Xεs)k

sk
=

(Xs)k

sk
+ ε

‖s‖1

sk
, s ∈ R

K
++, 1 ≤ k ≤ K . (1.75)

Now let {w(εn)}n∈N be any sequence in Π+
K with limn→∞ εn = 0 such that

lim
n→∞ ‖w(εn) − w‖2 = 0 . (1.76)

By strict monotonicity and continuity of F as well as by continuity of the
spectral radius as a function of matrix elements (Theorem A.6), it follows
from Theorem 1.24 that

F (ρ(X)) = lim
n→∞F (ρ(Xεn)) = lim

n→∞ min
s∈RK

++

K∑
k=1

wk(εn)F
(

(Xεns)k

sk

)

≥ lim
n→∞ inf

s∈RK
++

K∑
k=1

wk(εn)F
(

(Xs)k

sk

)

= inf
s∈RK

++

K∑
k=1

wkF

(
(Xs)k

sk

)
.

(1.77)

On the other hand, however,
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F (ρ(X)) = lim
n→∞ min

s∈RK
++

K∑
k=1

wk(εn)F
(

(Xεns)k

sk

)

= lim
n→∞ inf

s∈RK
++

[ K∑
k=1

(wk(εn) − wk)F
(

(Xεns)k

sk

)

+
K∑

k=1

wk

(
F

(
(Xεns)k

sk

)
− F

(
(Xs)k

sk

))
+

K∑
k=1

wkF

(
(Xs)k

sk

)]

≤ lim
n→∞ inf

s∈RK
++

[
‖w(εn) − w‖2︸ ︷︷ ︸

a(n)

∥∥∥∥F
(

(Xεns)k

sk

)∥∥∥∥
2

+ ‖w‖2

∥∥∥∥F
(

(Xεns)k

sk

)
− F

(
(Xs)k

sk

)∥∥∥∥
2︸ ︷︷ ︸

b(n)

+
K∑

k=1

wkF

(
(Xs)k

sk

)]

= inf
s∈RK

++

K∑
k=1

wkF

(
(Xs)k

sk

)

where the last step follows since, by (1.75) and (1.76), the nonnegative se-
quences {a(n)} and {b(n)} tends to zero as n → ∞. So combining the in-
equality above with (1.77) yields (1.74). By Theorem 1.24, if there exists
a positive eigenvector p associated with ρ(X), the infimum is attained for
s = p > 0.

As stated in the theorem, the infimum in (1.74) is attained if a positive right
eigenvector of X ∈ N+

K associated with ρ(X) can be found. An elegant char-
acterization of the set of such matrices is provided, for instance, by [4]. In
Appendix A.4.3, we have summarized some of these results. In particular,
Theorem A.32 characterizes the set of nonnegative matrices with positive
right eigenvectors in terms of isolated and maximal diagonal blocks of the
matrix (1.72) (Definition A.31). The conclusion of the theorem is that X has
a positive right eigenvector associated with ρ(X) if and only if the corre-
sponding normal form (1.72) satisfies the following two conditions.

(i) ρ(X) is an eigenvalue of each isolated diagonal block, and
(ii) ρ(X) is not an eigenvalue of the remaining diagonal blocks.

Using Definition A.31, the conditions can be expressed in an equivalent way
as follows: Each isolated diagonal block is maximal and there are no other
maximal diagonal blocks. Let BK denote the set of all nonnegative matrices
whose normal forms satisfy the above two conditions.

It is important to emphasize that X ∈ BK does not need to have a pos-
itive left eigenvector associated with ρ(X). Therefore, although the infimum
in (1.74) is attained when X ∈ BK , the weight vector w may have zero
components. From practical point of view, it is interesting to know whether
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w = q◦p is positive or not (see also the discussion in Sect. 5.5). This is equiv-
alent to asking whether E+

K(X) is an empty set or not. Based on Theorem
A.32, it is relatively easy to show (Theorem A.34 in Appendix A.4.3) that a
necessary and sufficient condition for E+

K(X) to be nonempty set is that the
normal form of X is block-irreducible matrix (Definition A.33 in Appendix
A.4.3) and each diagonal block is maximal in the sense of Definition A.31.
We use BK to denote the set of such block-irreducible matrices. Therefore,
we have E+

K(X) �= ∅ if and only if X ∈ BK .
Combining these observations, we can strengthen Theorem 1.60 as follows:

For any X ∈ BK ⊂ N+
K , there holds

min
s∈RK

++

K∑
k=1

wkF

(
(Xs)k

sk

)
= F (ρ(X)) . (1.78)

The minimum is attained if s = p where p > 0 is any positive right
eigenvector of X. Moreover, if X ∈ BK , we have w = q ◦ p > 0 for any
(q,p) ∈ E+

K(X) �= ∅.

1.6.3 Collatz–Wielandt-Type Characterization of the Spectral
Radius

For any X ∈ NK , we have

sup
s∈RK

++

min
1≤k≤K

(Xs)k

sk
≤ inf

s∈RK
++

max
1≤k≤K

(Xs)k

sk
= ρ(X) (1.79)

where strict inequality can be shown to hold for some nonnegative reducible
matrices. For instance, consider a 2 × 2 diagonal matrix X = diag(x1, x2)
with 0 < x1 ≤ x2. Then,

sup
s∈R2

++

min
1≤k≤2

(Xs)k

sk
= x1 inf

s∈R2
++

max
1≤k≤2

(Xs)k

sk
= x2 ,

and hence if x1 < x2, we have strict inequality in (1.79).

Remark 1.61. It is essential that the supremum and the infimum in (1.79)
are taken over RK

++. Otherwise, we could obtain 0/0 expressions. In or-
der to avoid this problem, one usually considers the functions f

X
(s) =

min1≤k≤K,sk �=0(Xs)k/sk and fX(s) = max1≤k≤K,sk �=0(Xs)k/sk, which are
both well defined on RK

+ . In this case, it is well-known that [12, 3]

sup
s∈RK

+

f
X

(s) = inf
s∈RK

+

fX(s) = ρ(X) .

The supremum and the minimum are attained for s = p ≥ 0.
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From (1.79), it follows that the Collatz-Wielandt type characterization of
Sect. 1.2.4 cannot be extended to general nonnegative matrices. However,
the inf-max part of (1.79) can be utilized to extend Lemma 1.28 to the set
N+

K . Indeed, proceeding essentially as in the proof of the lemma shows that
for any X ∈ N+

K and F ∈ G(X), we have

inf
s∈RK

++

sup
z∈Π+

K

K∑
k=1

zkF

(
(Xs)k

sk

)
= F (ρ(X)) . (1.80)

Moreover, by the discussion in Sect. 1.6.2, when X ∈ BK , the infimum and the
supremum are attained with s = p > 0 and z = w = q ◦ p > 0, respectively.

On the other hand, due to (1.79), Lemma 1.30 cannot be extended to
general nonnegative matrices. However, by the previous section, we know
that there exists a positive right eigenvector associated with ρ(X) if and only
if X ∈ BK . Therefore, with Theorem 1.60 in hand, we can proceed essentially
as in the proof of Lemma 1.30 to show that for any X ∈ BK and F ∈ G(X),

sup
z∈Π+

K

min
s∈RK

++

K∑
k=1

zkF

(
(Xs)k

sk

)
= F (ρ(X)) . (1.81)

Again, if X ∈ BK , the supremum is attained with z = w = q ◦ p > 0.
Summarizing we can say that the saddle point characterization of Theo-

rem 1.31 holds (with some minor modifications) for any X ∈ BK .

Theorem 1.62. Let X ∈ BK and F ∈ G(X) be given. Define G : RK
++ ×

Π+
K → R as

G(s, z) :=
K∑

k=1

zkF

(
(Xs)k

sk

)
. (1.82)

Then,

(i) the pair (p,w) ∈ RK
++ × Π+

K is a saddle point of G and

F
(
ρ(X)
)

= min max
s∈RK

++ z∈Π+
K

G(s, z) = maxmin
z∈Π+

K s∈RK
++

G(s, z) , (1.83)

(ii) w = q ◦ p ∈ Π+
K for any (q,p) ∈ E+

K(X) �= ∅.

1.7 Bibliograpical Notes

All the results presented in this chapter were obtained by the authors in the
course of working on problems in wireless networks [13, 14, 15, 16, 17, 18,
19]. To the best of our knowledge, some of these results were novel at the
time of publishing, but some others turned out to have been known in the
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mathematics community for a while. From the mathematical point of view,
however, they are still of some interest due to the different approach as well
as the different line of arguments. Moreover, we feel that some proofs are
more elementary, simpler, and shorter. Below the reader will find a short list
of references where we found alternative proofs of the results presented in
this chapter or some closely related results.

The Perron root characterization in Theorem 1.2 is an adapted form of the
variational principle for pressure expressed in terms of nonnegative matrices.
As aforementioned, this characterization can be deduced from [6, Equation
2.6 with 2.8 and 2.9]. In this form (but without proof), the theorem can be
found in [23, Theorem 3.1]. Roughly speaking, both papers deal with the first
and second partial derivatives of the Perron root with respect to the entries
of nonnegative matrices. The proof of Theorem 1.2 is elementary and seems
to be novel.

The assertion of Theorem 1.7 appears in [24, Equation 3.3] for positive
matrices, but the result of [24] extends to arbitrary irreducible matrices. In
contrast to [24], however, the proof presented here is elementary and therefore
may be of interest in its own right. Theorem 4.1 in [24] is closely related to
Theorem 1.11. However, the first one seems to apply only to matrices of
the form X = AYB where A and B are diagonal positive definite and Y
is positive semidefinite. There is an extension of this result [24, Theorem
4.2] showing that the inequalities proved in [24, Theorem 4.1] hold for any
nonnegative irreducible matrix X such that X−1 is an M -matrix (Definition
A.38). In this book, Theorem 1.11 immediately follows from Theorem 1.7 by
considering the fact that log x ≤ x−1 for all x > 0 with equality if and only if
x = 1. Therefore, both results apply to an arbitrary nonnegative irreducible
matrix. We point out that [24] provides a bunch of interesting results about
the spectral radius of DX where D is diagonal positive definite and X is
nonnegative.

The problem of convexity of the Perron root (Sects. 1.3) has also attracted
some attention in the literature. In particular, it seems that Theorem 1.36
was first proved by [25] for nonnegative matrices whose entries are contin-
uous functions of a scalar parameter on some interval. However, the exten-
sion to a parameter vector defined on some convex set is straightforward.
Obviously, [25] used different techniques since Theorem 1.2 was not known
at this time. In the engineering community, the result was rediscovered by
[26]. Kingman’s theorem was used by [27] to prove inequalities of the form
φ(eA+B) ≤ φ(eAeB) where A and B are complex matrices and φ is a real-
valued continuous function of the eigenvalues of its matrix argument. In a
special case, φ is a spectral radius, A is nonnegative, and B is diagonal real.
There are also some interesting results on log-convexity of spectral functions.

In [28], it was shown that f(D) = log(eDA) where D is diagonal and A
nonnegative is convex on the set of diagonal matrices. Using different tools,
the convexity of g(D) = max{Re λ : λ ∈ σ(A+D)} is shown in [29, 28, 30, 31].
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In [32] (see also [31]), the convexity property of f and g was related to the
convexity of certain sets of M -matrices, which in turn are related to the
feasibility set defined in this book.



2

On the Positive Solution to a Linear System

with Nonnegative Coefficients

This chapter deals with a positive solution p to the following system of linear
equations with nonnegative coefficients:

p = u + Xp . (2.1)

Here and hereafter, u ∈ RK
++ is a given positive vector, X ∈ R

K×K
+ is a given

nonnegative matrix (not necessarily irreducible), and p ∈ RK
++ is a sought

vector, provided that it exists.

2.1 Basic Concepts and Definitions

Before starting with the analysis, we need to address the fundamental prob-
lem of the existence of a positive solution p to (2.1). This problem is addressed
in Appendix A.4.4. In particular, by Theorem A.35, we know that a necessary
and sufficient condition for p ≥ 0,p �= 0, to exist is that ρ(X) < 1 where
ρ(X) is the spectral radius of X. Moreover, as u is positive, there is a unique
solution p, which is strictly positive and given by

p = (I − X)−1u .

Theorem A.30 asserts that λp := ρ(X) is an eigenvalue of X, that is to say
λp ∈ σ(X) where σ(X) is used to denote the spectrum of X (Definition A.7).

Remark 2.1. Note that except for the nonnegativity, there are no additional
constraints on X. In particular, X does not need to be irreducible. However,
it is worth pointing out that if X is irreducible and its Perron root λp =
ρ(X) > 0 satisfies λp < 1, then u �= 0 does not need to be positive for (2.1)
to have a unique positive solution p. This is one part of the assertion of
Theorem A.36.

Analogous to the previous chapter, we allow the entries of X to continuously
depend on some parameter vector ω ∈ Ω where the parameter set Ω is defined

S. Stańczak et al.: Resource Allocation in Wireless Networks, LNCS 4000, pp. 51–68, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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by (1.45) and is an open convex subset of RK . The only difference is that
here the matrix is not required to be irreducible for all parameter vectors. In
fact, X(ω) can even be identically the zero matrix, in which case, however,
the problems addressed in this chapter are trivial. To be precise, let

X(ω) := (xk,l(ω))1≤k,l≤K

be a matrix-valued function whose entries xk,l : Ω → R+ are continuous
functions defined on Ω. Considering Definition 1.32, this is formally written
as X ∈ NK(Ω), in which case X is said to be nonnegative on Ω. To conform
with the applications in wireless networks, we let each entry of the vector u
in (2.1) be a continuous positive function of the parameter vector ω as well.
We indicate this by writing u ∈ RK

++(Ω).
Now it follows from (2.1) and Theorem A.35 that, for any fixed ω ∈ Ω,

there exists a unique positive vector p(ω) satisfying1

p(ω) = X(ω)p(ω) + u(ω) (2.2)

if and only if
λp(ω) := ρ(X(ω)) < 1 . (2.3)

Moreover, for any ω ∈ Ω with λp(ω) < 1,

p(ω) =
(
I − X(ω)

)−1
u(ω) . (2.4)

Let F be the set of those parameter vectors ω ∈ Ω for which a positive
solution p(ω) to (2.2) exists. Formally, we have

F := {ω ∈ Ω : λp(ω) < 1} . (2.5)

Note that each entry of the vector p(ω) is a continuous map from F into the
set of positive reals R++. This is because if ω ∈ F, then the Neumann series∑∞

l=0(X(ω))l converges (Theorem A.11) and (I−X(ω))−1 =
∑∞

l=0(X(ω))l.
Therefore, since a concatenation of continuous maps is continuous, it follows
from

pk(ω) = eT
k

(
I − X(ω)

)−1
u(ω), ω ∈ F, 1 ≤ k ≤ K (2.6)

that pk : F → R++ is continuous. In particular, this implies that the l1-norm
of p(ω) given by

‖p(ω)‖1 =
K∑

k=1

pk(ω) = 1T (I − X(ω))−1u(ω), ω ∈ F (2.7)

is a continuous function on F as well.

1 However, as xk,l : Ω → R+ are not one-to-one maps, there may exist ω̂, ω̌ ∈
Ω, ω̂ �= ω̌, such that p(ω̂) = p(ω̌).
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In this chapter, we analyze both pk(ω) and ‖p(ω)‖1 as functions of the
parameter vector ω ∈ F. In doing so, most of our interest is devoted to
matrix-valued functions X(ω) of the form X(ω) = Γ(ω)V with V ∈ NK and

Γ(ω) = diag
(
γ1(ω1), . . . , γK(ωK)

)
.

Here and hereafter, γk : Qk → R++ is a continuous strictly monotone and
bijective function and Qk ⊆ R is some open interval (see also Sect. 1.3.1).
Formally, this is denoted by X ∈ NK,Γ(Ω) where

NK,Γ(Ω) := {Γ(ω)V, ω ∈ Ω : V ∈ NK} ⊂ NK(Ω) (2.8)

is the set of all nonnegative matrix-valued functions X(ω) of the form X(ω) =
Γ(ω)V for some given γk : Qk → R++, k = 1, . . . , K. In this special case, it
will also be assumed that u(ω) = (γ1(ω1), . . . , γK(ωK)). Exceptions are only
Sects. 2.3.1 and 2.3.2, where X(ω) and u(ω) are not confined to this special
form.

2.2 Feasibility Sets

The set F defined by (2.5) contains all parameter vectors such that a positive
solution to our system of linear equations exists. For this reason, if there
are no additional constraints on p, F is referred to as the feasibility set.
Notice that the definition is analogous to Definition 1.38, except that now
the spectral radius must be strictly smaller than 1. Therefore, the parameter
vectors satisfying λp(ω) = 1 are not members of F.2

In wireless networks, however, some additional constraints on p are im-
posed, which gives rise to the definition of some subset of F as the feasi-
bility set. Constraints on the l1-norm of p(ω) are common to applications
in wireless communications networks. More precisely, we say that p(ω) is
constrained in the l1-norm if

‖p(ω)‖1 ≤ Pt, ω ∈ Ω

must hold for some given constant Pt > 0, referred to as a sum (or total)
constraint. Consequently, in this case, the parameter vector ω ∈ Ω is feasible
if and only if ω ∈ F(Pt) where

F(α) = {ω ∈ F : ‖p(ω)‖1 ≤ α, α > 0} ⊆ F . (2.9)

Notice that due to continuity of ‖p(ω)‖1, F(α) is monotonic in α > 0 with
respect to set inclusion in the following sense: For any 0 < α ≤ β, there holds
F(α) ⊆ F(β). Therefore, since F(α) ⊆ F for all α > 0, we have
2 In the previous chapter, F is the set of all the parameter vectors for which the

homogenous system of linear equations (I − X(ω))p(ω) = 0, with X(ω) being
irreducible for all ω ∈ Ω, has a positive solution p(ω).
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F =
⋃
α>0

F(α) (2.10)

where the union is taken with respect to all α > 0.
Another common situation encountered in wireless networks is that of

constraining each element of p(ω) individually. Therefore, if there are positive
constants P1, . . . , PK such that pk(ω) ≤ Pk must hold for each 1 ≤ k ≤ K,
we say that p(ω) is subject to individual constraints. Clearly, in this case,
the set of all feasible parameter vectors is given by

F(P1, . . . , PK) :=
⋂

α∈{P1,...,PK}
Fk(α) (2.11)

where
Fk(α) := {ω ∈ F : pk(ω) ≤ α} . (2.12)

These two types of constraints are often combined by imposing both individ-
ual and sum constraints on p(ω). Therefore, in this case, the feasibility set
becomes

F(Pt; P1, . . . , PK) := F(Pt) ∩ F(P1, . . . , PK) . (2.13)

Note that F(Pt; P1, . . . , PK) = F(Pt) if Pt ≤ Pk for each 1 ≤ k ≤ K, and
F(Pt; P1, . . . , PK) = F(P1, . . . , PK) if

∑
k Pk ≤ Pt. Thus, both F(Pt) and

F(P1, . . . , PK) can be viewed as special cases of F(Pt; P1, . . . , PK).

Remark 2.2. In what follows, we exclude the trivial case where the feasibility
set is an empty set.

It is important to emphasize that the geometry of the feasibility sets depends
on the choice of X(ω) and u(ω), ω ∈ Ω. In particular, the feasibility set is not
convex in general. To illustrate the definitions, let us consider an elementary
example.

Example 2.3. Let X(ω) = 0 for all ω ∈ Ω and u(ω) = (γ(ω1), . . . , γ(ωK))
where γ : Q → R++ is any continuous bijective function. We see that (2.4)
reduces to p(ω) = (γ(ω1), . . . , γ(ωK)), and hence one obtains

F = Ω = QK

F(Pt) = {ω ∈ F :
∑

k
γ(ωk) ≤ Pt}

F(P1, . . . , PK) = {ω ∈ F : γ(ωk) ≤ Pk, 1 ≤ k ≤ K} .

Clearly, F and F(P1, . . . , PK) are both convex sets, regardless of the choice
of γ(x). In contrast, F(Pt) is not convex in general. A sufficient condition
for F(Pt) (and also F(Pt; P1, . . . , PK)) to be a convex set is that γ(x) is
convex.
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F(Pt; P1, P2)

γ−1(P1) ω1

γ(ω1) + γ(ω2) = Pt

γ−1(P2)

ω2

Fig. 2.1. Illustration of Example 2.3: The feasibility set F(Pt; P1, P2) with X(ω) ≡
0, γ(x) = ex − 1, x > 0, and u(ω) = (eω1 − 1, eω2 − 1). The constraints P1, P2 and
Pt are chosen to satisfy 0 < P1, P2 < Pt and Pt < P1 + P2.

An important example of a convex function is γ(x) = ex−1, x > 0. Assuming
X(ω) = 0 for all ω ∈ Ω = R

2
++ and u(ω) = (eω1 −1, eω2 −1), Fig. 2.1 depicts

the feasibility set F(Pt; P1, P2) ⊂ R2
++ defined by (2.13) for some P1, P2 and

Pt.
Unfortunately, as the example below shows, convexity of γ(x) is not suf-

ficient for F(Pt) to be a convex set if X(ω) = Γ(ω)V �= 0.

Example 2.4. Suppose that X(ω) =
( 0 γ(ω1)�

γ(ω2)� 0

)
for some � ≥ 0. Further-

more, assume that u(ω) = (γ(ω1), γ(ω2)) and γ(x) = ex − 1, x > 0. Thus,

Ω = R
K
++

F = {ω ∈ Ω : λp(ω) = �
√

(eω1 − 1)(eω2 − 1) < 1} .

Now we claim that F is not a convex set if � > 0. To see this, we write
λp(ω) = 1 with � > 0 as a function of ω1 > 0 to obtain ω2 = f(ω1) =
log 1+�2eω1−�2

�2(eω1−1) , � > 0. The function f(x), x > 0, is twice differentiable and its
second derivative is is strictly positive for all x > 0. Consequently, instead of
the feasibility set F, its complement in RK

++ (Fc = RK
++ \ F) is convex.

Now let us consider F(Pt) with � ≥ 0. Applying (2.7) to our special case
yields

‖p(ω)‖1 =
eω1 + eω2 − 2 + 2�(eω1 − 1)(eω2 − 1)

1 − �2(eω1 − 1)(eω2 − 1)
, ω ∈ F .

Hence, writing ‖p(ω)‖1 = Pt as a function of ω1 ∈ [0, log(1+Pt)], one obtains

ω2 = g(ω1) = log
(1 − �) (2 + Pt + Pt �) + eω1 (� (2 + Pt �) − 1)

1 + �
(
eω1 − 1

)(
2 + Pt�

)



56 2 On the Positive Solution to a Linear System

where the argument under the logarithm is positive. Now if � = 0, g(x) is
concave on x ∈ [0, log(1 + Pt)] since then g′′(x) = − ex(2+Pt)

(2+Pt−ex)2 is strictly
negative on [0, log(1 + Pt)]. This implies that F(Pt) is a convex set, which is
in total agreement with the preceding example. On the other hand, if � = 1,
the second derivative of g(x), x ∈ [0, log(1 + Pt)], is

g′′(x) =
ex (1 + Pt) (2 + Pt)

(1 + Pt − ex (2 + Pt))
2 , , x ∈ [0, log(1 + Pt)]

which is positive. Thus, if � = 1, F(Pt) is not convex but its complement
Fc(Pt) = RK

+ \F(Pt) is a convex set. An examination of the second derivative
of g(x), x ∈ [0, log(1 + Pt)], shows that

g′′(x)

⎧⎪⎨
⎪⎩

< 0 � < h(Pt)
> 0 � > h(Pt)
= 0 � = h(Pt)

h(x) =
√

1 + x − 1
x

.

Since h(x) → 0 as x → ∞, we have g′′(x) > 0 for any � > 0, which complies
with the discussion above that f(x) is convex for any � > 0. On the other
hand, if x → 0, then h(x) → 1/2. So, at small values of Pt, convexity of F(Pt)
changes to convexity of Fc(Pt) around the value � ≈ 1/2.

The example above demonstrates that the feasibility set may be a nonconvex
set even if each entry of X(ω) is convex on Ω. As a consequence, a stronger
property than convexity is necessary to guarantee convexity of F. In the
following section, we show that if X(ω) is log-convex on Ω (see Definition
1.34), then pk(ω) is a log-convex function of ω ∈ F for each 1 ≤ k ≤ K.

2.3 Convexity Results

In this section, we show that if X ∈ NK(Ω) and u ∈ RK
++(Ω) are both

log-convex on Ω, then pk : F → R++ given by (2.6) is log-convex for each
1 ≤ k ≤ K. This in turn implies that the feasibility set F(Pt; P1, . . . , PK) is a
convex set, regardless of the choice of P1, . . . , PK > 0 and Pt > 0. Following
that, we consider the problem of strict convexity.

Recall that according to Definition 1.34, the notation X ∈ LCK(Ω) means
that X ∈ NK(Ω) is log-convex on Ω. Furthermore, note that by this definition,
the identically zero function is a log-convex function (see also the remark in
Sect. 1.3). In an analogous manner, we say that u ∈ RK

++(Ω) is log-convex on
Ω if each entry of the vector u(ω) is a continuous log-convex function defined
on Ω. Let us indicate this by writing u ∈ lc(Ω) ⊂ RK

++(Ω).

2.3.1 Log-Convexity of the Positive Solution

Let ω(µ) with µ ∈ [0, 1] be a convex combination of two arbitrary vectors
ω̂, ω̌ ∈ Ω:
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ω(µ) = (1 − µ)ω̂ + µω̌, µ ∈ [0, 1] .

Unless otherwise stated, assume that ω̂, ω̌ ∈ F ⊆ Ω, which implies that both
pk(ω̂) > 0 and pk(ω̌) > 0 exists.

Theorem 2.5. Let X ∈ LCK(Ω) ⊂ NK(Ω) and u ∈ lc(Ω) ⊂ RK
++(Ω) be

arbitrary. Then, pk(ω) is log-convex on F for each 1 ≤ k ≤ K, i.e., we have

pk(ω(µ)) ≤ pk(ω̂)1−µpk(ω̌)µ, 1 ≤ k ≤ K (2.14)

for all µ ∈ (0, 1) and ω̂, ω̌ ∈ F.

Proof. Let ω̂, ω̌ ∈ F be arbitrary. Then, by Theorem 1.36 as well as by Sect.
1.6, we know that λp(ω(µ)) < 1 for all µ ∈ (0, 1). Thus, for every µ ∈ (0, 1),
there exists a unique positive pk(ω(µ)) given by (see (2.6))

pk(ω(µ)) = eT
k

[
I − X(ω(µ))

]−1
u(ω(µ)), 1 ≤ k ≤ K .

Now let µ ∈ (0, 1) be arbitrary but fixed. Since ω(µ) ∈ F, we can expand
(I − X(ω(µ)))−1 into a Neumann series (see Theorem A.11) to obtain

[
I − X(ω(µ))

]−1 =
∞∑
l=0

(
X(ω(µ))

)l
.

From this it follows that

pk(ω(µ)) = eT
k

∞∑
l=0

(
X(ω(µ))

)l
u(ω(µ)) =

∞∑
l=0

eT
k

(
X(ω(µ))

)l
u(ω(µ))

=
∞∑

l=0

gl

(
ω(µ)
)
.

By assumption, all the entries of X(ω) and u(ω) are log-convex on F. Hence,
(2.14) immediately follows from the equation above when one considers the
following properties of log-convex functions:

(i) If two positive functions f and g are log-convex, then f + g and f · g are
log-convex.

(ii) For any convergent sequence fn of log-convex functions, the limit f =
limn→∞ fn is log-convex provided that the limit is strictly positive.

Due to (i), gl : F → R++ is log-convex for each l ≥ 0 and
∑M

l=0 gl(ω) is
log-convex for any M > 0. Furthermore, since

∑M
l=0 gl(ω) is increasing in M

and gl is positive, it must converge to a positive limit as M → +∞. Hence,
by (ii), pk(ω) is log-convex on F and (2.14) must hold.



58 2 On the Positive Solution to a Linear System

Remark 2.6. Recall that the spectral radius of X ∈ NK(Ω) can be expressed
as follows (Theorem A.10)

λp(ω) = lim
m→+∞ ‖X(ω)m‖1/m .

Thus, considering the two properties (i) and (ii) of log-convex functions in
the proof of Theorem 2.5 and the fact that if f is log-convex, so also is fα for
every positive α, shows that if the entries of X(ω) are log-convex functions
on Ω, then λp(ω) is log-convex on Ω. This leads to an alternative proof of
log-convexity of the spectral root (see for instance [26]).

A trivial but important consequence of the theorem is the following.

Corollary 2.7. If X ∈ LCK(Ω) ⊂ NK(Ω) and u ∈ lc(Ω) ⊂ RK
++, then

‖p(ω)‖1 =
∑K

k=1 pk(ω) is log-convex on F, that is to say,

‖p(ω(µ))‖1 ≤ ‖p(ω̂)‖1−µ
1 ‖p(ω̌)‖µ

1 (2.15)

for all µ ∈ (0, 1) and ω̂, ω̌ ∈ F.

Proof. As log-convex functions are closed under addition, it is clear that the
log-convexity property carries over to the l1-norm of p(ω).

More generally, we can say that if X ∈ LCK(Ω) and u ∈ lc(Ω), then

F (p1(ω(µ)), . . . , pK(ω(µ))) ≤ F (p1(ω̂), . . . , pK(ω̂))1−µF (p1(ω̌), . . . , pK(ω̌))µ

for all µ ∈ (0, 1) and ω̂, ω̌ ∈ F where F : RK
++ → R++ is any function that

preserves log-convexity. Standard examples of such functions are

1. weighted sum: F (x1, . . . , xK) =
∑K

k=1 wkxk,
2. weighted pointwise multiplication: F (x1, . . . , xK) =

∏K
k=1 wkxk, and

3. pointwise maximum and supremum: F (x1, . . . , xK) = max1≤k≤K xk.

The weighted sum operation and the pointwise multiplication operation pre-
serve log-convexity as log-convex functions are closed under both addition
and multiplication. The claim about the pointwise maximum operation fol-
lows since

max{pk(ω(µ)) :1 ≤ k ≤ K}
≤ max{pk(ω̂)1−µpk(ω̌)µ : 1 ≤ k ≤ K}
≤ max{pk(ω̂)1−µ : 1 ≤ k ≤ K}max{pk(ω̌)µ : 1 ≤ k ≤ K}
= max{pk(ω̂) : 1 ≤ k ≤ K}1−µ max{pk(ω̌) : 1 ≤ k ≤ K}µ

for all µ ∈ (0, 1) and ω̂, ω̌ ∈ F.
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2.3.2 Convexity of the Feasibility Set

Since the geometric mean is bounded above by the arithmetic mean, we have

pk(ω̂)1−µpk(ω̌)µ ≤ (1 − µ)pk(ω̂) + µpk(ω̌) ≤ max{pk(ω̂), pk(ω̌)}

for all ω̂, ω̌ ∈ F and µ ∈ (0, 1). Thus, if pk(ω) is log-convex on F, then the
inequality above implies that Fk(Pk) defined by (2.12) is a convex set. By
Theorem 2.5, we know that if X(ω) and u(ω) are both log-convex on Ω, then
pk : F → R++ is log-convex for each 1 ≤ k ≤ K. Consequently, since the
intersection of convex sets is convex, it follows from (2.11) that F(P1, . . . , PK)
is a convex set if X ∈ LCK(Ω) and u ∈ lc(Ω). By Corollary 2.7 and (2.13), we
see that this also true for F(Pt) and F(Pt; P1, . . . , PK). We summarize these
observations in a corollary.

Corollary 2.8. Suppose that X ∈ LCK(Ω) ⊂ NK(Ω) and u ∈ lc(Ω) ⊂
RK

++(Ω). Then, F(P1, . . . , PK), F(Pt) and F(Pt; P1, . . . , PK) are convex sets,
regardless of the choice of Pt, P1, . . . , PK > 0.

To illustrate the results, let us consider a simple example.

Example 2.9. Let X(ω) and u(ω) be defined as in Example 2.4 except that
now γ(x) = exp(x), x ∈ R. Clearly, the exponential function is log-convex
on R. Thus, by Theorem 1.36 (note that the matrix X(ω) is irreducible for
all ω ∈ R2), the Perron root is log-convex and, by Corollary 1.39, F is a
convex set. In contrast to the previous example, all pairs satisfying λp(ω) =
�
√

eω1eω2 = 1 lie on a line given by ω2 = −ω1 − 2 log �, which, of course, is
both convex and concave.

The nonnegative solution (2.4) yields

p(ω) =

(
eω1+�eω1+ω2

1−�2eω1+ω2

eω2+�eω1+ω2

1−�2eω1+ω2

)
, �2eω1+ω2 < 1 .

By Theorem 2.5, both entries are log-convex on R2. All pairs (ω1, ω2) satis-
fying p1(ω) = P1 and p2(ω) = P2 are ω2 = f(ω1) = log[(P1 − eω1)/(�(1 +
�P1))]−ω1, ω1 < log P1, and ω2 = g(ω1) = log[P2/(1+eω1�+eω1�2P2)], ω2 <
log P2, respectively. It may be verified that f(x) is concave on (−∞, log P1)
and g(x) is concave on R implying that F1(P1), F2(P2) and F(P1, P2) are all
convex sets. Similarly, ‖p(ω)‖1 = Pt can be rewritten to give ω2 = h(ω1) =
log[(Pt − eω1)/(1 + 2eω1� + eω1�2P2)], ω1 < log Pt. Again, h(x) can be seen
to be concave on (−∞, log Pt), from which convexity of F(Pt) follows.

In the example above, instead of γ(x) = γ1(x) = γ2(x) = ex, x ∈ R, we could
consider any log-convex functions γ1 : Q1 → R++ and γ2 : Q2 → R++. In
such a case, the unique positive solution p(ω) exists if and only if ω ∈ F =
{ω ∈ Ω : λp(ω) = �

√
γ1(ω1)γ2(ω2) < 1} and is given by
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p(ω) =

(
γ1(ω1)+�γ1(ω1)γ2(ω2)

1−�2γ1(ω1)γ2(ω2)
γ2(ω2)+�γ1(ω1)γ2(ω2)

1−�2γ1(ω1)γ2(ω2)

)
, ω ∈ F . (2.16)

It may be verified that if γ1 and γ2 are both log-convex, then each entry
of p(ω) is log-convex on F. This in turn implies that the feasibility set
F(Pt; P1, . . . , PK) is a convex set, regardless of the choice of Pt > 0 and
P1, . . . , PK > 0.

Finally, it is worth pointing out that the results presented in this chap-
ter straightforwardly extends to the case when pk(ω) is either subject to
‖p(ω)‖1 ≤ Pt(ω) or pk(ω) ≤ Pk(ω), 1 ≤ k ≤ K, for all ω ∈ Ω where
Pt : Ω → R++ and Pk : Ω → R++ are given continuous concave functions.
So if pk(ω) is convex for each 1 ≤ k ≤ K, then {ω ∈ Ω : ‖p(ω)‖1 ≤ Pt(ω)}
and {ω ∈ Ω : pk(ω) ≤ Pk(ω)}, 1 ≤ k ≤ K, are convex sets.

2.3.3 Strict Log-Convexity

When X(ω) and u(ω) are log-convex on Ω, Theorem 2.5 asserts that pk(ω)
is a log-convex function of ω ∈ F. In this section, we strengthen this result by
proving conditions on strict log-convexity. In the second part of the book, we
will exploit these results to prove some interesting properties of the addressed
power control problem.

For the analysis in this section, it is assumed that X ∈ NK(Ω) and u ∈
RK

++(Ω) are restricted to be of the following form:

u(ω) = Γ(ω)z
X(ω) = Γ(ω)V with trace(V) = 0

. (2.17)

Here and hereafter, z = (z1, . . . , zK) is any fixed positive vector, V ∈ NK and
γk : Qk → R++, k = 1 . . .K are continuous and strictly monotonic (bijective)
functions. Formally, we have X ∈ N0

K,Γ(Ω) which is the subset of NK,Γ(Ω)
defined by (2.8) such that trace(V) = 0.

Lemma 2.10. Let X ∈ N0
K,Γ(Ω) and u(ω) = Γ(ω)z, ω ∈ Ω, be arbitrary.

Then, p : F → RK
++ defined by (2.4) is a bijection.

Proof. Due to the bijectivity of γk : Qk → R++ and the uniqueness of the
positive solution in (2.4), it immediately follows from

p(ω) = (I − Γ(ω)V)−1Γ(ω)z = (Γ(ω)−1 − V)−1z

that p(ω) is a bijection from F onto RK
++ for any z > 0.

It is important to emphasize that the positivity of the vector z is crucial
for the results to hold. In contrast, the assumption trace(V) = 0 is merely
motivated by practical applications and could be easily dropped. Note that
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due to this assumption, (Vs)k for any s ∈ RK is independent of sk for each
1 ≤ k ≤ K.

In what follows, we extensively exploit the following special form of
Hölder’s inequality (Theorem A.2): For any µ ∈ (0, 1) and u,v ∈ R

K
+ , there

holds
〈u,v〉 ≤ ‖u‖p‖v‖q, p =

1
1 − µ

and q =
1
µ

, (2.18)

with equality if and only if there exists a constant c > 0 such that

vk = c up−1
k = c u

µ
1−µ

k , 1 ≤ k ≤ K .

Finally, recall that γk : Qk → R++, 1 ≤ k ≤ K, is said to be strictly log-
convex if γk(x(µ)) < γk(x̂)1−µγk(x̌)µ for all µ ∈ (0, 1) and x̂, x̌ ∈ Qk with
x̂ �= x̌ and x(µ) = (1 − µ)x̂ + µx̌. Similarly, we say that pk : F → R++

given by (2.6) is strictly log-convex for some 1 ≤ k ≤ K if pk(ω(µ)) <
pk(ω̂)1−µpk(ω̌)µ for all µ ∈ (0, 1) and ω̂, ω̌ ∈ F with ω̂ �= ω̌. The following
result is a straightforward extension of Theorem 2.5 to the case of strictly
log-convex functions γ1, . . . , γK .

Theorem 2.11. Let V ≥ 0 be arbitrary, and let γk : Q → R++ be strictly
log-convex for each 1 ≤ k ≤ K. Then, for all ω̂, ω̌ ∈ F with ω̂ �= ω̌, there
exists an index 1 ≤ k0 ≤ K such that pk0(ω(µ)) < pk0(ω̂)1−µpk0(ω̌)µ for all
µ ∈ (0, 1).

Proof. Let ω̂, ω̌ ∈ F be arbitrary, and let k0 be an index such that ω̂k0 �= ω̌k0 .
By Theorem 2.5, we know that ω(µ) = (1 − µ)ω̂ + µω̌ ∈ F for all µ ∈ (0, 1).
Therefore, for any µ ∈ (0, 1), it follows from (2.2) that

pk0(ω(µ)) = γk0(ωk0(µ))
(
Vp(ω(µ)) + z

)
k0

.

So, by strict log-convexity of γk0 and positivity of the vector z, we have

pk0(ω(µ)) < γk0(ω̂k0)
1−µγk0(ω̌k0)

µ
(
Vp(ω(µ)) + z

)
k0

.

Considering Theorem 2.5 and Hölder’s inequality (2.18) yields

pk0(ω(µ)) < γk0(ω̂k0)
1−µγk0(ω̌k0)

µ
[ K∑

l=1

(
vk0,lpl(ω̂)

)1−µ(
vk0,lpl(ω̌)

)µ + zk0

]
≤ γk0(ω̂k0)

1−µγk0(ω̌k0)
µ
[(

Vp(ω̂)
)1−µ

k0

(
Vp(ω̌)

)µ
k0

+ z1−µ
k0

zµ
k0

]
= 〈û, ǔ〉

where3

3 For any vector u ∈ R
K and any constant c ∈ R, (u)c

k = [(u)k]c = uc
k, 1 ≤ k ≤ K.
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û =

(
(Γ(ω̂)Vp(ω̂))1−µ

k0

(Γ(ω̂)z)1−µ
k0

)
ǔ =
(

(Γ(ω̌)Vp(ω̌))µ
k0

(Γ(ω̌)z)µ
k0

)
.

By repeated application of (2.18), we obtain

pk0(ω(µ)) < ‖û‖ 1
1−µ

‖ǔ‖ 1
µ

=
(
Γ(ω̂)Vp(ω̂) + Γ(ω̂)z

)1−µ

k0

(
Γ(ω̌)Vp(ω̌) + Γ(ω̌)z

)µ

k0

= pk0(ω̂)1−µpk0(ω̌)µ .

This completes the proof.

Remarkably, there are no additional restrictions on V ≥ 0. As shown below,
we obtain a similar property if we drop the requirement on strict log-convexity
of γk, 1 ≤ k ≤ K, and instead put some constraints on V.

Theorem 2.12. Let γk : Qk → R++ be log-convex for each 1 ≤ k ≤ K.
Suppose that V ∈ R

K×K
+ is chosen such that for each 1 ≤ l ≤ K, there exists

k �= l with vk,l > 0. Then, for any fixed ω̂, ω̌ ∈ F with ω̂ �= ω̌, there exists
k0, 1 ≤ k0 ≤ K, so that pk0(ω(µ)) < pk0(ω̂)1−µpk0(ω̌)µ for all µ ∈ (0, 1).

Proof. Let ω̂, ω̌ ∈ F with ω̂ �= ω̌ be arbitrary. Since p(ω) is a bijection
(Lemma 2.10), we have p(ω̂) �= p(ω̌). Choose l0, 1 ≤ l0 ≤ K, such that

pl0(ω̂) �= pl0(ω̌) (2.19)

and let k0 �= l0 be any index with vk0,l0 > 0. Note that by assumption, there
exists such an index. Using

û =

⎛
⎜⎝
∑K

l=1
l �=l0

(
γk0(ω̂k0)vk0,lpl(ω̂)

)1−µ

(γk0(ω̂k0)zk0)1−µ(
γk0(ω̂k0)vk0,l0pl0(ω̂)

)1−µ

⎞
⎟⎠ ǔ =

⎛
⎜⎝
∑K

l=1
l �=l0

(
γk0(ω̌k0)vk0,lpl(ω̌)

)µ
(γk0(ω̌k0)zk0)µ(

γk0(ω̌k0)vk0,l0pl0(ω̌)
)µ
⎞
⎟⎠

and considering log-convexity of γk, 1 ≤ k ≤ K, one obtains

pk0(ω(µ)) =
(
Γ(ω(µ))Vp(ω(µ)) + Γ(ω(µ))z

)
k0

(a)

≤ 〈û, ǔ〉
(b)

≤ ‖û‖ 1
1−µ

‖ǔ‖ 1
µ

= pk0(ω̂)1−µpk0(ω̌)µ

for any µ ∈ (0, 1), where (a) follows from Theorem 2.5 and (b) from (2.18).
Therefore, since vk0,l0 > 0 and zk0 > 0, we can have equality in (b) only if
pl0(ω̂) = pl0(ω̌) which contradicts (2.19), and hence completes the proof.

It is important to emphasize that Theorems 2.11 and 2.12 do not imply the
existence of an index k such that pk(ω) is strictly log-convex on F. In fact,
the theorems only asserts that for any fixed ω̂, ω̌ ∈ F, ω̂ �= ω̌, there is an
index k such that pk(ω(µ)) < pk(ω̂)1−µpk(ω̌)µ for all µ ∈ (0, 1). However,
this is sufficient to deduce the following corollary.
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Corollary 2.13. Suppose that at least one of the following holds.

(i) For each 1 ≤ k ≤ K, γk : Qk → R++ is strictly log-convex.
(ii) Each column of the matrix V has at least one positive entry.

Then ‖p(ω)‖1 is strictly log-convex on F.

Proof. Let ω̂, ω̌ ∈ F with ω̂ �= ω̌ be arbitrary. For any fixed µ ∈ (0, 1), we
have

‖p(ω(µ))‖1 =
K∑

k=1

pk(ω(µ))
(a)
<

K∑
k=1

(pk(ω̂))1−µ(pk(ω̌))µ

(b)

≤
( K∑

k=1

pk(ω̂)
)1−µ( K∑

k=1

pk(ω̌)
)µ

= ‖p(ω̂)‖1−µ
1 ‖p(ω̌)‖µ

1

where (a) is either due to Theorem 2.11 or due to Theorem 2.12 depending
on whether (i) or (ii) holds, and (b) follows from (2.18).

Obviously, condition (ii) of the corollary, which is equivalent to the condition
of Theorem 2.12, is weaker than irreducibility. For instance, the following two
reducible matrices satisfy the condition of Theorem 2.12:

V =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ and V =

⎛
⎝0 1 1

1 0 0
0 0 0

⎞
⎠ .

With these particular choices of V and with γ1(x) = γ2(x) = γ3(x) = ex, x ∈
R, we have (respectively)

p1(ω) = eω1p2(ω) + eω1z1

p2(ω) = eω2p1(ω) + eω2z2

p3(ω) = eω3p4(ω) + eω3z3

p4(ω) = eω4p3(ω) + eω4z4

p1(ω) = eω1p2(ω) + eω1p3(ω) + eω1z1

p2(ω) = eω2p1(ω) + eω2z2

p3(ω) = eω3z3 .

In the first case, we see that p1(ω) and p2(ω) are strictly log-convex with
respect to (ω1, ω2) but they are independent of (ω3, ω4). For p3(ω) and p4(ω),
the situation is reversed so that ‖p(ω)‖1 remains strictly log-convex on F. In
the second example, we can write p1(ω) as

p1(ω) = eω1
eω2z2 + eω3z3 + z1

1 − eω1eω2

which is strictly log-convex on F. In contrast, the transpose matrix V =( 0 1 0
1 0 0
1 0 0

)
does not satisfy the conditions of Theorem 2.12 since vk,3 = 0 for

each 1 ≤ k ≤ K. In this case, the nonnegative solution p(ω), ω ∈ R
3, is given

by
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p1(ω) = eω1p2(ω) + eω1z1

p2(ω) = eω2p1(ω) + eω2z2

p3(ω) = eω3p1(ω) + eω3z3 .

We see that whereas p1(ω) and p2(ω) are independent of ω3, p3(ω) is a log-
convex function of ω3, though not strictly log-convex. Therefore, there is no
index k such that pk(ω) is strictly log-convex along the third coordinate of
ω (with ω1 and ω2 being fixed).

Finally we show that if V is irreducible, pk(ω) is strictly log-convex on F
for each 1 ≤ k ≤ K, regardless of whether γk is strictly log-convex or only
log-convex.

Theorem 2.14. Let γk : Qk → R++, 1 ≤ k ≤ K, be log-convex, and let
V ∈ XK . Then, pk(ω) is strictly log-convex on F for each 1 ≤ k ≤ K.

Proof. Let ω̂, ω̌ ∈ F with ω̂ �= ω̌ be arbitrary. Suppose that the theorem is
false. Then, there exists k0 and µ0 ∈ (0, 1) such that

pk0(ω(µ0)) = pk0(ω̂)1−µ0pk0(ω̌)µ0 .

So, by log-convexity of γk, Theorem 2.5 and Hölder’s inequality,

pk0(ω(µ0))

= γk0(ωk0(µ0))
( K∑

l=1

vk0,lpl(ω(µ0)) + zk0

)
(a)

≤ γk0(ωk0(µ0))
( K∑

l=1

vk0,lpl(ω̂)1−µ0pl(ω̌)µ0 + zk0

)

≤ γk0(ω̂k0)
1−µ0γk0(ω̌k0)

µ0

( K∑
l=1

(vk0,lpl(ω̂))1−µ0 (vk0,lpl(ω̌))µ0 + zk0

)
≤ γk0(ω̂k0)

1−µ0γk0(ω̌k0)
µ0

·
[( K∑

l=1

vk0,lpl(ω̂)
)1−µ0( K∑

l=1

vk0,lpl(ω̌)
)µ0

+ z1−µ0
k0

zµ0
k0

]
(b)

≤
(
γk0(ω̂k0)

( K∑
l=1

vk0,lpl(ω̂) + zk0

))1−µ0
(
γk0(ω̌k0)

( K∑
l=1

vk0,lpl(ω̌) + zk0

))µ0

= pk0(ω̂)1−µ0pk0(ω̌)µ0 .

So, in each step, we have equality. Now let N1 ⊂ {1, . . . , K} be a set of those
indices l for which vk0,l > 0. As V is irreducible, we have N1 �= ∅. Hence, since
z is positive, it follows from (2.18) that there can be equality in (b) only if
∀l∈N1 pl(ω̂) = pl(ω̌). Now suppose that N2 ⊂ {1, . . . , K} with N2 �= N1 is a set
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of all indices l such that there exists k1 ∈ N1, k1 �= k0, with vk1,l > 0. Again,
due to irreducibility of V, it holds N2 �= ∅. Moreover, since there is equality
in (a) if only if pk1(ω(µ0)) = pk1(ω̂)1−µ0pk1(ω̌)µ0 for each k1 ∈ N1, we can
reason along the same lines as above to show that ∀l∈N2 pl(ω̂) = pl(ω̌). Now
since V is irreducible, we can proceed in this way until there are no indices
left to obtain

∀1≤k≤K pk(ω̂) = pk(ω̌) .

Clearly, since z is positive and p(ω) is a bijection, this implies that ω̂ = ω̌,
which contradicts ω̂ �= ω̌ and therefore completes the proof.

Figure 2.2 depicts ‖p(ω(µ))‖1 as a function of µ ∈ [0, 1] for three different
log-convex functions γ(x) = γ1(x) = . . . = γK(x), x > 0, and a randomly
chosen irreducible matrix V. Since γ(x) = ex/(1 − ex) is strictly log-convex
on Q = (−∞, 0) and γ(x) = 1/x is strictly log-convex on (0, +∞), it follows
from Theorem 2.11 that ‖p(ω)‖1 is strictly log-convex on QK . In contrast,
γ(x) = ex is not strictly log-convex on R. Nevertheless, since V is irreducible,
Theorem 2.14 asserts that the l1-norm is strictly log-convex.

‖p
(ω

(µ
))
‖ 1

1

γ(x) = 1
x

γ(x) = exp(x)
1−exp(x)

γ(x) = exp(x)

0.2 0.4 0.6 0.8

4

8

12

‖p(ω̂)‖1−µ
1 ‖p(µ̌)‖µ

1

0
µ

Fig. 2.2. The l1-norm ‖p(ω(µ))‖1 as a function of µ ∈ [0, 1] for some fixed ω̂, ω̌ ∈
QK chosen such that ‖p(ω̂)‖1 and ‖p(ω̌)‖1 are independent of the choice of γ.

2.3.4 Strict Convexity of the Feasibility Sets

The results in the preceding section may be used to deduce strict convexity
of the feasibility set in the following sense (see also Definition 1.41).

Definition 2.15. F(Pt) (respectively, F(P1, . . . , PK)) is said to be strictly
convex (or s-convex) if ω(µ) = (1−µ)ω̂+µω̌ is interior to F(Pt) (respectively,
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F(P1, . . . , PK)) for all µ ∈ (0, 1) and ω̂, ω̌ ∈ ∂F(Pt) (respectively, ω̂, ω̌ ∈
∂F(P1, . . . , PK)), ω̂ �= ω̌, where

∂F(Pt) = {ω ∈ F : ‖p(ω)‖1 = Pt}
∂F(P1, . . . , PK) = {ω ∈ F : ∃1≤k≤K pk(ω) = Pk} .

(2.20)

Under the setup of Corollary 2.13, F(Pt) is a strictly convex set for all Pt > 0
since then ‖p(ω)‖1 is strictly log-convex. These conditions however are not
necessary for F(Pt) to be a strictly convex set (see Example 2.3). As far as
F(P1, . . . , PK) is concerned, the set is strictly convex when pk(ω) is strictly
log-convex for each 1 ≤ k ≤ K. Therefore, we have the following corollary.

Corollary 2.16. Under the setup of Theorem 2.14, F (P1, . . . , PK) is a
strictly convex set for any P1, . . . , PK > 0.

Of course, if F(P1, . . . , PK) is strictly convex, so also is F (Pt; P1, . . . , PK).

2.4 The Linear Case

In this section, we further focus on the special case (2.17) except that now

γ(x) = γ1(x) = · · · = γK(x) = x, x > 0 .

Hence, we have Ω = QK = RK
++.

The linear case has already been considered in Sect. 1.5 where it is shown
that Fc is not a convex set in general. More precisely, Theorem 1.57 asserts
that there exist V ∈ XK and K > 1 such that neither F nor its complement
Fc = R

K
++ \ F is a convex set. In this section, we will use this result to show

that Fc(Pt) = RK
++\F(Pt) is in general not convex either. However, note that

this does not exclude the possibility of convexity of Fc(Pt) for some special
choices of Pt, K and V. For instance, consider K = 2, z = (1, 1) and V =( 0 �

� 0

)
for any fixed � > 0. Then, we see that the set of pairs (ω1, ω2) ∈ ∂F(Pt)

(see Definition 2.15) must satisfy ω2 = f(ω1) = (Pt−ω1)/(1+2�ω1+�2ω1Pt).
Now it may be verified that

f ′(x) =
−(1 + �Pt)2

(1 + �(2 + �Pt)x)2
, x > 0 .

Thus, as the numerator is independent of x and the denominator is increasing
in x > 0, we must have f ′′(x) ≥ 0 for every x > 0. From this, it follows that
f(x) is not concave but convex on R++. As a consequence of this, Fc(Pt) =
R2

++ \ F(Pt) is a convex set if K = 2 and γ1(x) = γ2(x) = x, x > 0.
As in Sect. 1.5, this simple example might suggest that Fc(Pt) is a convex

set in general, which in turn would allow us to draw some interesting conclu-
sions with respect to optimal scheduling in wireless networks. Unfortunately,
simple reasoning shows that such a general statement is not possible.
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F(P1, P2)

p2(ω) = P2

ω2

ω1

‖p(ω)‖1 = Pt

p1(ω) = P1

Fig. 2.3. F(P1, P2) is equal to the intersection of F1(P1) and F2(P2). Thus,
Fc(P1, P2) is equal to the union of Fc

1(P1) and Fc
2(P2), each of which is a convex

set if γ(x) = x, x > 0. However, the union of these sets is not convex in general.

Theorem 2.17. There exist at least one Pt > 0 and an irreducible matrix
V ≥ 0 for some K > 1 such that Fc(Pt) is not convex.

Proof. The proof is by contradiction. So, assume that Fc(Pt) is convex for
all Pt > 0, K > 1 and all V ∈ XK . Therefore, as the intersection of convex
sets is convex, it follows from (see (2.10))

Fc =
⋂

Pt>0

Fc(Pt)

that Fc is a convex set for all K > 1 and all V ∈ XK . However, this contra-
dicts Theorem 1.57, and therefore prove the assertion.

Notice that the theorem only deals with the feasibility set when p(ω) is
constrained in the l1-norm. When each element of p(ω) is constrained indi-
vidually, the complement of the feasibility set defined by (2.11) is not convex
even if K = 2. Indeed, proceeding essentially as before shows that p1(ω) = P1

and p2(ω) = P2 are both convex if they are written explicitely as functions
of ω1. However, even though Fc

1(P1) and Fc
2(P2) are both convex sets, the set

Fc(P1, P2) = (F1(P1) ∩ F2(P2))c = Fc
1(P1) ∪ Fc

2(P2)

does not need to be convex as the union of convex sets is not convex in general.
This is illustrated in Fig. 2.3. Obviously, the same reasoning applies to hybrid
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constraints, in which case neither the feasibility set F(Pt; P1, . . . , PK) given
by (2.13) nor its complement is a convex set in general. This immediately
follows from (2.13) and the discussion above.
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3

Introduction

Wireless networking has been a vibrant research area over the last two
decades. During this time, we have observed the evolution of a number of
different wireless communications standards that support a wide range of ser-
vices. They include delay-sensitive applications such as voice and real-time
video that usually have strict requirements with respect to quality-of-service
(QoS) parameters such as data rate, delay and/or bit error rate. In such cases,
a network designer must ensure that the QoS requirements are satisfied per-
manently. Data applications, however, may have fundamentally different QoS
requirements and traffic characteristics than video or voice applications. In
fact, most data applications are delay-insensitive, and therefore may tolerate
larger transmission delays.

The principal contributor to many of the problems and limitations that
beset wireless networks is the radio propagation channel or, simply, the wire-
less channel. Transmission signals can be severely distorted by the wireless
channel whose parameters such as path delay, path amplitude, and carrier
phase shifts may vary with time and frequency. Strict limitation on commu-
nication resources such as the power and the bandwidth is another major
design criterion. As a consequence, the wireless channel is error-prone and
highly unreliable being subject to several impairment factors that are of tran-
sient nature, such as those caused by co-channel interference or multipaths.
In fact, a unique characteristic of wireless networks being absent in wired net-
works is that the channel behavior is a function of the interference level and
location of the subscriber unit. Excessive interference can significantly dete-
riorate the network performance and waste scarce communication resources.
For this reason, strategies for resource allocation and interference manage-
ment are usually necessary in wireless networks to provide acceptable QoS
levels to the users. The resource allocation problem is significantly aggravated
when subscriber units self-configure to form a network without the aid of any
established infrastructure. These so-called ad hoc wireless networks have a
huge potential for many exciting applications, but also pose new technical
challenges.

S. Stańczak et al.: Resource Allocation in Wireless Networks, LNCS 4000, pp. 71–73, 2006.
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There are different mechanisms for resource allocation and interference
management in wireless networks. The most important ones include conges-
tion control, routing, link scheduling and power control [33]. Each of these
components of the overall network design can be targeted separately, thereby
ignoring important interdependencies between them. Exploiting these inter-
dependencies through a joint optimization of these components may lead to
significant performance gains, but it may otherwise be computationally pro-
hibitive to be of any use in practice. In this book, we mainly focus on the
power control problem and briefly discuss the possibility of combining power
control with a node-by-node congestion control. Roughly speaking, the power
control problem addresses the issue of coordinating transmit powers of links
such that some aggregate utility function of link rates attains its maximum.
We are convinced that power control will be of great importance for wire-
less ad hoc networks. Due to the lack of a central network controller in such
networks, link scheduling strategies are notoriously difficult to implement.
Therefore, a reasonable approach is to avoid only strong interference from
neighboring links, and then use an appropriate power control policy to man-
age the remaining interference in a network.

Early work on power control focused on the problem of maximizing the
minimum signal-to-interference ratio (SIR) [34, 35, 36, 37, 38, 39, 40]. A
closely related approach aims at satisfying given target SIR levels with a min-
imum total transmit power [41, 42, 43]. In the latter case, optimal power allo-
cations can be found by means of iterative algorithms that allow distributed
implementation, provided that the SIR requirements are feasible [36, 37, 42].
However, the notion of being able to guarantee quality of service to applica-
tions is simply unrealistic in many ad-hoc wireless networks [33]. The channel
and network dynamics of such networks coupled with multi-hop routing make
it difficult to ensure some requirements permanently. Moreover, a number of
(elastic) data applications such as file transfer or electronic mail do not have
such permanent requirements. Here, link QoS is provided according to some
link prices and low QoS levels are temporarily acceptable. Therefore, in such
cases, best-effort power control strategies aiming at maximizing some aggre-
gate utility function of link rates (or other quantities) appears to be a more
appropriate approach. Such strategies implicitly use the relative delay tol-
erance of data applications as well as the network and channel dynamics to
improve the network performance [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]
(and references therein). At the same time, the use of increasing and strictly
concave utility functions ensures the desired degree of (link-layer and end-to-
end) fairness [56, 57, 53].

Unfortunately, the power control problem is not a convex problem in
general. Yet the convexity property is a crucial prerequisite for implementing
power control algorithms in practical systems as this property opens the
door to a widely developed theory and efficient solutions. Moreover, if the
problem is convex, a global convergence of the algorithms can be guaranteed.
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Based on the theory presented in Chapter 2, we will identify a class of utility
functions for which the power control problem can be transformed into a
convex optimization problem. The new utility functions differ from traditional
ones but, under a standard rate model in wireless systems, they are still
increasing and strictly concave functions of link rates.

This part of the book is structured as follows. Chapter 4 introduces the
network and system model, which includes a brief description of the medium
access control (MAC) layer and detailed information about the physical layer.
We consider two examples of wireless networks to illustrate the definitions.
Chapter 5 formulates the problem of resource allocation in communications
networks. Based on some currently existing approaches for rate control in
wired networks, we formulate the utility maximization problem for elastic
traffic in wireless networks, which then gives rise to a utility-based power con-
trol problem. Finally, Chapter 6 presents and analyzes distributed gradient-
based power control algorithms.



4

Network Model

4.1 Basic Definitions

A wireless communications network is a collection of nodes being capable
of communicating with each other over wireless communications links. Let
N := {1, . . . , N} be the set of nodes, and let (n, m) with n �= m represent a
wireless link from node n ∈ N to node m ∈ N. We say that there is a wireless
link (n, m) with n �= m if both

(i) node n is allowed to transmit data to node m, and
(ii) a minimum signal-to-noise ratio (SNR), being necessary for successful

transmission, can be achieved on link (n, m), in the absence of inter-
ference and with transmit power on this link subject to some power
constraints.

It is reasonable to assume that wireless links are bidirectional in the sense
that (n, m) exists if and only if there exists (m, n). We label links (in any
particular way) by the integers 1, 2, . . . , L and use L = {1, . . . , L} to denote a
set of all wireless links.1 The pair (N, L) is referred to as the network topology.
With any network, we associate the topology graph, which is an undirected
graph where a vertex corresponds to a node in the network, and an edge
between two vertices represents a wireless link between the corresponding
nodes.

Messages originate at source nodes where they are usually broken into
shorter strings of bits called packets. The packets are passed from node to
node to their destinations according to some routing protocol. We assume
that no packets travel in a loop and that, for every flow, there is a at least one
path (a sequence of connected links) from source node to destination node.
All nodes (including source and destination nodes) may act as relays with
packets being decoded and encoded at each relay. We use an on/off flow model
by which messages are characterized by a sequence of bits flowing into the

1 If it is necessary to specify which nodes are connected by link l ∈ L, then we
write l = l(n, m) when l is a wireless link from node n to node m.
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network at a given rate. Successive message arrivals are separated by random
durations (inter arrival times) in which no flow enters the network. Assume
that there are S flows (packet streams) represented by S = {1, 2, . . . , S}, each
flow having a unique origin and destination. On the way to a destination,
packets of a single flow can take different routes (Fig. 4.1). The expected
traffic, in nats per time unit, of flow s ∈ S is denoted by νs. There are no
special demands on the arrival statistics, except that the traffic should not be
very bursty. Indeed, some form of power control and link scheduling usually
helps to improve the network performance in case of continuous data stream
or long packet bursts.

The flows share wireless links by competing for access to wireless resources
such as power, time and frequency. If routes are fixed, nodes along the flow
paths maintain per flow queuing, thereby establishing a number of logical
links on wireless links, each logical link associated with a flow. Without loss
of generality, assume that there are K logical links labeled by 1, . . . , K. Let
K = {1, . . . , K} be the set of these links defined such that the set of logical
links originating at node n ∈ N is K(n) =

{∑n−1
j=1 |K(j)|+1, . . . ,

∑n
j=1 |K(j)|}

where |K(n)| denotes the cardinality of K(n) ⊆ K with |K(0)| = 0 (Fig. 4.1).
Connections over logical links are referred to as MAC (medium access control)
layer flows, being one-hop flows between neighboring nodes.

It is important to point out that L (and hence also the network topology)
may change over time due to mobility of nodes or other time varying factors.
However, these variations are usually on a much larger time scale than frame
intervals, and therefore are neglected in this book. Actually, for the theory and
algorithms presented here, it is essential that the radio propagation channel
remains constant for the duration of a frame interval, with transitions between
different channel states occurring at the frame boundaries. At the beginning
of every frame, transmit powers are adjusted to changed channel and network
conditions.

4.2 Medium Access Control

The purpose of data link control (DLC) is to provide reliable data transfer
across the physical link. To this end, the DLC layer places some overhead
control bits at the beginning of each packet and some more overhead bits
at the end of each packet, resulting in a longer string of bits called a frame.
These overhead bits determine whether an error has occurred during the
transmission and, if errors occur, they require retransmissions. These bits
also determine where one data frame ends and the next one starts (framing).

Another important component of the DLC layer is medium access control
(MAC). It is often considered as the lower layer of the DLC layer. The MAC
protocols dictate how different logical links (MAC layer flows) share avail-
able communication resources such as power and bandwidth. Methods for
dividing the spectrum into different channels (the so-called channelization)
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Fig. 4.1. There are five nodes represented by N = {1, 2, 3, 4, 5} and 10 wireless links:
(1, 2), (2, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 5), (5, 3), (4, 5), (5, 4). The wireless links are
not numbered in the figure. Two flows entering the network at nodes 1, 3 and
destined for node 4 establish 6 logical links K = {1, 2, 3, 4, 5, 6}. For instance, logical
links (or MAC layer flows) originating at node 2 are 2 and 3 so that we have
K(2) = {2, 3}. These links share wireless link (2, 4). The flow rates are ν1 and ν2.
Packets of flow 2 take two different routes to their destination that is node 4.

and assigning them to different links include time division multiple access
(TDMA), frequency division multiple access (FDMA), code division multiple
access (CDMA), and space division multiple access (SDMA) where the lat-
ter one is usually used in combination with TDMA or CDMA.2 Obviously,
hybrid combinations of all these methods are also possible.

FDMA is the oldest way for multiple radio transmitters to share the radio
spectrum. Here each transmitter is assigned a distinct frequency channel so
that receivers can discriminate among them by tuning to the desired channel.
However, FDMA is inflexible and inefficient in handling flows with different
bit rates. It would be necessary to modify FDMA so as to allocate frequency
bands of different bandwidth to different logical links to accommodate differ-
ences in bit requirements. This requires simultaneous demodulation of multi-
ple channels in different frequency bands, which is not a practicable solution.
In case of TDMA, time is divided into nonoverlapping time slots. Each logical
link is assigned one or multiple time slots such that there is only one link
active at any time. TDMA is more flexible than FDMA in handling flows
of various bit rates, but does not necessarily do this efficiently. The main
difficulty with TDMA is the need for very accurate synchronization.

The efficiency of both FDMA and TDMA can be significantly improved
by means of spatial reuse and dynamic allocation of bandwidth in terms of
frequency or time. However, this requires a lot of coordination between nodes,

2 Note that here the term “multiple access” refers to any situation where different
logical transmitters (including those located at the same node) access the wireless
channel.
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which is difficult to achieve in networks without a fixed infrastructure. The
problem can sometimes be alleviated by introducing a temporal hierarchical
infrastructure where some nodes take over the role of local network con-
trollers. However, such approaches still generate a lot of overhead traffic and
therefore waste scarce wireless resources.

Unlike FDMA and TDMA, in code division multiple access (CDMA), the
signal of every link occupies the entire frequency band at the same time. Each
signal is modulated by a distinct signature sequence in such a manner that it
enables the receivers to separate out different links. To ensure sufficiently low
interference level, the signature sequences have good correlation properties.
Often it is desired that some sequences are mutually orthogonal. However,
establishing and maintaining the orthogonality in wireless networks is a quite
tricky task. This is particularly true for fully asynchronous multipath chan-
nels in which case a complete elimination of multiple-access and intersymbol
interference requires an allocation of signature sequences with zero aperiodic
correlation side-lobes.3 In fact, it was shown [59] that there are no such se-
quences in finite dimensional complex spaces. Yet the orthogonality can be
established if all signals are at least coarsely synchronized at all receivers. One
can also assign mutually orthogonal signature sequences to links originating
at the same node. The problem is, however, that the number of mutually
orthogonal sequences is strongly limited, making the reuse of sequences, and
hence coordination between nodes necessary. Also maintenance of a coarse
synchronization between different nodes may be a problem.

Consequently, the use of nonorthogonal sequences with relatively good
correlation properties (semi-orthogonal sequences) appears to be a better
strategy for some real world applications. The advantage of this approach
is that there is no need for precise synchronization between logical links
originating at different nodes. Moreover, little coordination is necessary if
the number of sequences is relatively large. If the set is large enough, nodes
can even pick up sequences randomly from a given set of sequences, with a low
probability of choosing the same sequence. However, it should be noticed that
there is a fundamental trade-off between the number of available signature
sequences and their correlation properties. As a result, when semi-orthogonal
sequences are used, the number of simultaneously active links is interference-
limited. This means that the more links are active at the same time, the higher
the level of interference, which in turn leads to the performance degradation
of all links.

In the presence of interference, the network performance can be signifi-
cantly improved by taking advantage of power control in combination with
some link scheduling. These are two central mechanisms for resource alloca-
tion and interference management. Roughly speaking, whereas a link schedul-
ing policy chooses groups of links that are to be activated at the same time,

3 Aperiodic cross-correlations and autocorrelations not at the origin are referred
to as aperiodic correlation side-lobes.
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the power control part controls the interference level at the links by adjusting
their transmit powers so as to achieve some sharing objectives. In order to
achieve the best performance, power control and link scheduling should be
optimized jointly. However, this problem is in general notoriously difficult
to solve even in a centralized manner, not to mention the implementation
of such policies in ad hoc wireless networks. To the best of our knowledge,
there is no efficient distributed mechanism for assigning a number of time
slots (subframes) to different wireless links. For these reasons, heuristics al-
gorithms for link scheduling are quite common. A popular approach is to
schedule neighboring links in different subframes, which is based on the com-
mon assumption that concurrent transmission of neighboring links will (with
high probability) cause strong interference.

Our main focus in this book is on the power control problem for groups
of interfering links that share the entire frequency band. We can assume
any fixed link scheduling policy (in the time domain), including a suitable
collision avoidance mechanism (see the remark in Sect. 4.3.1). Of course, pure
TDMA is not of interest here since then the power control problem is trivial.
However, it should be emphasized that the theory presented in this book does
not necessarily apply to CDMA-based networks. For instance, interference
may occur in any network with spatial reuse of resources. This is for instance
true when multiple antennas are used to spatially separate different signals
(see the example in Sect. 4.3.4).

4.3 Wireless Communication Channel

At the physical layer, frames are broken into shorter strings of bits and trans-
mitted on logical links. The function of the physical layer is to provide logical
links to the DLC layer while satisfying some quality of service requirements
with respect to the bit loss and rate. To achieve this, there is a certain
arrangement of several components on each side of a radio propagation chan-
nel (called a wireless channel) such as modulators, amplifiers, filters and
mixers. The wireless channel distorts transmit signals in a way that can vary
with time and system conditions. These distortions are usually of a random
nature, and therefore cannot be exactly predicted. Still worse, wireless links
share the available wireless channel, making each link prone to interference
from other links. All this implies that the capacity of wireless links exhibits
an ephemeral and dynamic nature, depending on both the wireless channel
condition and transmit powers of all interfering links.

There is a huge amount of literature on physical layer methods for improv-
ing the overall network performance (see [60] and references therein). These
methods include different multiuser and multiple antenna techniques whose
purpose is to combat interference from other links as well as to mitigate the
detrimental impact of the wireless channel. Such techniques make physical
links robust against interference and channel variations, thereby increasing
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their capacity as well as simplifying the network design significantly. However,
from the standpoint of practical design, there are some important disadvan-
tages as well. First of all, most of these techniques may entail a significant
increase of additional control traffic due to the increased demand on global in-
formation. So far, it is not clear whether the benefit of additional complexity
outweighs these additional costs. Another important problem is an increased
sensitivity of these methods against, for instance, erroneous channel state
information. For these reasons, these techniques have not found wide usage
in contemporary wireless networks.

Throughout this book, each link is a point-to-point communication link
equipped with a linear receiver, followed by a single-user decoder. The inter-
ference at the output of each logical receiver is treated as noise. We adopt
a block fading channel model in which the radio propagation channel holds
its states for the duration of some frame interval, with transitions occurring
on frame boundaries. This is a reasonable approximation for common radio
propagation channels. For the sake of clarity, the channel is assumed to be
flat, which, roughly speaking, means that each transmit signal is multiplied
by some complex numbers, called the channel coefficients. Moreover, it is as-
sumed that the frames of all links are perfectly synchronized in the sense that
their beginnings and ends coincide. The common frame interval B of length
TF = 1 is partitioned into M disjoint intervals T(1), . . . ,T(M) (called slots
or symbol intervals) such that

∀m∈{1,...,M} T(m) = [(m − 1)T, mT ) ⊂ TF ,

M⋃
m=1

T(m) = B .

The slot length T is chosen such that M = TF /T is large to ensure statistical
significance (see also the following section). Each slot, say slot m, contains
a certain number of information-bearing symbols Xk(m), 1 ≤ k ≤ K, trans-
mitted on different links.4 Since every symbol may carry one or several data
bits, there is no loss in generality in assuming that every slot contains at most
one symbol of link k. For simplicity, we also assume that baseband signals
used to transmit the symbols on all links are square integrable functions on
[0, T ]. In particular, due to the perfect synchronization and the flat fading
assumption, this implies that the information about Xk(m), k ∈ K, at the
kth logical transmitter is contained in time slot T(m).

Remark 4.1. If a baseband signal is time-limited (as assumed above), it can-
not be band-limited. In such a case, one takes W > 0 as the bandwidth of a
time-limited signal if “most” of its energy is contained in (−W, W ) [60].

Each logical receiver observes a superposition of all transmit signals corrupted
by an additive white Gaussian noise. Let yk(t) ∈ C, t ∈ T(m), be an obser-
vation on link k in slot m, and let ck(t) ∈ C, t ∈ [0, T ), be a given square
4 Throughout the book, we neglect the transmission of control symbols such as

pilot or synchronization symbols.
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integrable function associated with this link, which is called the kth logical
receiver (or simply receiver). By far the most prominent example of ck(t) is
the so-called matched-filter receiver [60, 61]. Given an arbitrary 1 ≤ m ≤ M ,
the observation yk(t) in the interval T(m) is projected on ck(t − (m − 1)T )
to give

X̂k(m) =
∫

T(m)

ck(t − (m − 1)T )yk(t)dt < +∞, 1 ≤ m ≤ M

which is bounded since

∀m∀k

∫
T(m)

|yk(t)|2dt < +∞ and
∫ T

0

|ck(t)|2dt < +∞ .

The quantities X̂k(1), . . . , X̂k(M) are referred to as soft-decision variables
and are used to decode the information-bearing symbols Xk(1), . . . , Xk(M)
transmitted on link k. Consequently, it is desired that X̂k(m) should be as
close to Xk(m) as possible (at least on average) with respect to a suitable per-
formance measure. In all that follows, it is assumed that if Xk(1), . . . , Xk(M)
are chosen i.i.d. for every 1 ≤ k ≤ K, then yk(t) is a realization of a stationary
ergodic stochastic process.

4.3.1 Signal-to-Interference Ratio

A widespread and useful performance measure is the signal-to-interference+
noise ratio (SIR). SIR gives the ratio of powers due to the desired link and due
to all other interfering components at a soft-decision variable. To be precise,
suppose that Xk(1), . . . , Xk(M) are chosen i.i.d from some (finite) set and

E[Xk(m)] = 0 and E[|Xk(m)|2] = pk, 1 ≤ m ≤ M, 1 ≤ k ≤ K . (4.1)

Then, the expected value of SIR at the output of the kth logical receiver is
independent of m (due to the stationarity) and is given by

SIRk(p) :=
Vk pk∑K

l=1
plVk,l + σ2

k

=
pk∑K

l=1
pl

Vk,l

Vk
+ σ2

k

Vk

, 1 ≤ k ≤ K. (4.2)

The notation in (4.2) is defined as follows.

• pk ≥ 0 is the transmit power on link k. We use

p = (p1, . . . , pK) ∈ R
K
+ (4.3)

to denote a vector of transmit powers, referred to as power vector or power
allocation.

• Vk > 0 is proportional to path gain on logical link k and depends on the
spectrum allocation, various system parameters, as well as on the state of
the wireless channel.
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• Vk,l ≥ 0, l �= k, is a path gain (coupling factor) between link l and link
k. In other words, if transmit power on link l is pl, then the expected
interference from this link on link k �= l is plVk,l. Note that in general, we
have Vk,l �= Vl,k. If Vk,l = 0, then link k is said to be orthogonal to link
l. As before, Vk,l depends on the spectrum allocation, receiver structure,
various system parameters, as well as the channel state. In general, there
may be constraints in the simultaneous activation of links (e.g., nodes may
not receive and transmit simultaneously). This situation can be captured
by making both Vk,l and Vl,k sufficiently large for some k �= l.

• Vk,k ≥ 0 captures the effect of self- and intersymbol interference, which
may occur, for instance, due to the time-dispersive nature of the wireless
channel. In many cases of practical interest, it is reasonable to assume
that Vk,k = 0 for every 1 ≤ k ≤ K.

• σ2
k > 0 is the Gaussian noise variance at the output of the kth logical

receiver.

Remark 4.2. In practice, strong interference is avoided using an appropriate
collision avoidance protocol. If strong interference (collision) still occurs, then
packets are lost and must often be retransmitted. Such protocols may be
a part of a link scheduling policy (see Sect. 5.2.1). The design of collision
avoidance protocols is beyond the scope of this book. In fact, we implicitly
assume that collisions are perfectly avoided. For instance, when nodes may
not receive and transmit simultaneously, this assumption means that wireless
links constitute a matching in the topology graph. Recall that a matching is
a set of edges such that no two of them have any common vertex [62].

It is convenient to write the quantities Vk, Vk,k and Vk,l in matrix form as
follows

(V)k,l = vk,l =

{
Vk,k

Vk
k = l

Vk,l

Vk
k �= l .

(4.4)

In a broader sense, the matrix V represents the effective state of the wireless
channel and thus is referred to as the channel state matrix. The vector of
effective noise variances

z =
(

σ2
1

V1
, . . . ,

σ2
K

VK

)
(4.5)

is called the (effective) noise vector. Note that this is actually the vector of
normalized noise variances. We see from (4.2) that SIR depends on both V
and z.

Remark 4.3. Unless otherwise stated, it is assumed throughout the book that
no self-interference is present, that is, Vk,k = 0 or, equivalently, trace(V) = 0.
In fact, from the mathematical point of view, the self-interference presents
no additional challenge. In particular, the algorithms presented in Chapt. 6
apply to systems with self-interference as well.
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The primary message the reader should take away from this section is that
SIRk at the output of any receiver depends in general not only on transmit
power on link k, but also on transmit powers of all other links. Furthermore,
due to typically large values of M as well as due to the ergodicity of the
received signal yk(t), it is reasonable to assume that the expected value of
the signal-to-interference ratio SIRk at every soft-decision variable is equal
to the time-average SIR, with the average taken over all symbols transmitted
in a given frame interval.

4.3.2 Power Constraints

In practice, there is a variety of system constraints. Most of them have only
a marginal impact on the results presented in this book, and therefore are
neglected for the sake of clarity. However, constraints on transmit powers
must be incorporated into the system model since otherwise the results permit
only crude insight into performance limits of practical networks.

Strict limitations on transmit powers in wireless networks result from a
number of factors, including regulations, hardware costs and battery life.
Most studies distinguish between two types of power constraints, namely
peak constraint and average constraint. The first one is expressed in terms
of the maximum crest factor (or peak-to-average power ratio (PAPR)) and is
typically a result of some hardware constraints and regulations. Therefore, the
peak power constraints usually pertain to individual physical communication
links. In contrast, the average power constraint may be imposed on the overall
transmit power in a network to reduce interference to adjacent networks as
well as on individual nodes to prolong battery life.

The average transmit power is closely related to relevant performance
measures such as data rate and bit error rate. As a consequence, some average
transmit power on each logical link is necessary (but not always sufficient) to
guarantee performance requirements of applications with regard to data rate
and bit error rate. In this book, we assume individual power constraints on
each node. To be precise, let P1, . . . , PN be positive real numbers, referred to
as individual power constraints. Now we say that there are individual power
constraints on each node if p ∈ P where

P := P1 × · · · × PN , Pn :=
{
x ∈ R

|K(n)|
+ :

|K(n)|∑
k=1

xk ≤ Pn

}
. (4.6)

In other words, if p(n) = (pk)k∈K(n) is the vector of average transmit powers
on logical links originating at node n ∈ N, then p(n) ∈ Pn. This model
includes two types of power constraints often encountered in practice.

(i) Sum (or total) power constraint: A network is constrained only on total
power so that ‖p‖1 =

∑K
k=1 pk ≤ Pt for some given Pt > 0. Constraints

on total transmit power are typical for data transmission from a base
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station to mobile nodes. The best-known example is the down-link chan-
nel of a single-cell wireless cellular network. Total power constraints can
also be imposed on transmit powers of mobile nodes to limit the radia-
tion to other networks.

(ii) Individual power constraints on each link: This scenario corresponds to
the situation where each node is a start point for exactly one logical
link. Therefore, in this case, pk ≤ Pk, k = 1, . . . , K, for some given
P1, . . . , PK > 0. A widely studied example is the up-link channel of a
wireless cellular network.

Finally we point out that for the analysis presented in this book, the limi-
tations on average transmit powers are of interest only when the noise vari-
ance σ2

k in (4.2) is relatively large in comparison with the interference factor∑K
l=1 plVk,l. Otherwise, if σ2

k is negligible when compared with the interfer-
ence term and V is irreducible (Definition A.21), then it is justified to assume

SIRk(p) ≈ SIR0
k(p) :=

pkVk∑K
l=1 plVk,l

.

This is a reasonable approximation for relatively large CDMA-based networks
with pseudo-orthogonal spreading sequences. Due to the ray property

∀c>0 SIR0
k(p) = SIR0

k(c · p), 1 ≤ k ≤ K

we see that if the Gaussian noise is neglected, the transmit power on each
logical link can always be scaled down to satisfy given power constraints
without influencing SIR values. Throughout the book, the effective noise
vector z is assumed to be positive.

4.3.3 Data Rate Model

The data rate attainable on a wireless link is not fixed but depends in general
on transmit powers, channel states and link scheduling policy involved. The
data rate model under a link scheduling protocol is considered in Sect. 5.2.1.
Now we assume that no link scheduling is involved which means that each
link, say link k ∈ K, is either active (pk > 0) or idle (pk = 0) during the whole
frame interval. Then, given any channel matrix V ≥ 0 defined by (4.4), the
data rate (in nats per channel use) on link k is a nonlinear function of the
transmit power vector p and is given by

νk(p) = Φ
(
SIRk(p)

)
(4.7)

where SIRk(p) is the signal-to-interference ratio defined by (4.2). Note that
(4.7) is the data rate within a frame, and hence it may vary from frame to
frame due to the changes of V and p. Furthermore, note that the data rate
on any link depends on transmit powers of other links. In other words, the
data rates are interdependent since they are functions of global variables.
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In this book, unless otherwise stated, it is assumed that

νk(p) = Φ
(
SIRk(p)

)
= κ1 log(1 + κ2SIRk(p)), k ∈ K (4.8)

where κ1, κ2 > 0 are some system constants, and log(x), x > 0, is the natural
logarithm.5 The constant κ1 depends primarily on the frequency bandwidth.
Without loss of generality, it is assumed that κ1 = 1. The constant κ2 > 0
is dependent on a modulation scheme and the desired bit error rate. For
simplicity, we also assume that κ2 = 1.

It is important to emphasize that, for the analysis in this book, it is not
necessary that the data rate on link k is exactly of the form given by (4.8).
We will adhere to this common model for concreteness. In general, however, it
is reasonable to assume that the rate-SIR relationship Φ : R+ → R+ satisfies
the following conditions.

(i) Φ is a continuously differentiable and strictly increasing function.
(ii) Φ(x) → 0 as x → 0 and Φ(x) → +∞ as x → +∞.

Obviously, Φ(x) = log(1 + x), x ≥ 0, satisfies both conditions. Note that
due to the first condition, Φ is bijective (Definition B.4), and therefore there
exists an inverse function Φ−1(x) : R+ → R+ such that Φ(Φ−1(x)) = x, x ≥ 0
(Theorem B.5). In addition to these assumptions, in this book, the function
Φ needs to be further restricted so as to guarantee that

U(x) = Ψ(Φ−1(x)), x > 0 (4.9)

is increasing and strictly concave, where Ψ : R++ → R satisfies the Ψ -
conditions 5.5. So if (4.8) holds, then Φ−1(x) = ex − 1, x ≥ 0 and U(x)
is increasing and strictly concave (see Sect. 5.2.5). But this requirement is
also satisfied by the linear function Φ(x) = x, x ≥ 0.

4.3.4 Two Examples

Now we briefly illustrate the definitions introduced above by considering two
examples of wireless communications networks.

A Cellular Network with Linear Beam-Forming Antennas

First consider a single-cell of a wireless cellular network with a multi-element
antenna at the base station. No antenna arrays are considered for the mobiles.
Such a network has a star topology with the base station acting as a central
network controller. Due to the single-hop operation, no routing protocol is
needed. Without loss of generality, we can assume that there is one logical

5 In order to express data rate in bits per channel use, one should use the logarithm
to the base 2.
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link per wireless link. This in turn implies that there are as many down-
links as flows (or users). This implies that there are K = N − 1 source
destination pairs and no relays. If we assume that node 1 is the base station,
then l = l(n, m) ∈ L is either a wireless link from the base station n = 1 to
node m ∈ {2, . . . , N} or from node n ∈ {2, . . . , N} to the base station m = 1.
The set K(1) ⊂ K of wireless links originating at the base station (node 1)
establishes the so-called down-link channel, whereas its complement K \K(1)
constitutes the up-link channel from the mobile stations to the base station.
In practice, down-links and up-links are used either in separate frame intervals
(time division duplex (TDD) mode) or different frequency bands (frequency
division duplex (FDD) mode). As a consequence the down-link and up-link
channels can be considered separately with K(1) and K \K(1) as link sets for
the down-link and up-link channel, respectively.

Let us first focus on the down-link scenario from the base station to
N − 1 mobile nodes being arbitrarily distributed in a cell. As mentioned
above, the base station is equipped with a multi-element antenna and each
mobile station has an omnidirectional antenna (one antenna element). Sup-
pose that there are W ≥ 1 antenna elements at the base station. The data
stream for each user, say user k, is spread over the antenna array by a vec-
tor uk ∈ C

W with ‖uk‖2 = 1, a so-called beam-forming vector. To be more
precise, for an arbitrary slot m, consider the information-bearing symbols
X1(m), . . . , XK(m) that are to be transmitted to the mobile nodes. The base
station forms the vector xT UH and transmits each element of this vector, say
element j, over the jth antenna element, where U = (u1, . . . ,uK) ∈ CW×K

and x = (X1(m), . . . , XK(m)). The resulting transmit signals at each antenna
element are distorted on their way to the mobile nodes. Here we focus on a
multiplicative distortion meaning that the contribution of the jth antenna el-
ement to the received signal at node k is equal to hj,kxT UHej where hj,k ∈ C

is usually referred to as the jth channel coefficient and ej ∈ {0, 1}W is the
vector with 1 at the jth position and zeros elsewhere. The received signal at
node k is a straightforward superposition of these contributions corrupted by
a realization nk of an independent Gaussian noise with the variance σ2

k. As a
result, the soft-decision variable X̂k(m) is given by X̂k(m) = xT UHhk + nk.
The vector hk = (h1,k, . . . , hW,k) is referred to as the channel signature of
user k. It depends on channel and system parameters such as the array geom-
etry, the relative position of a node to the base station, and the signal path
attenuation. The soft-decision variable X̂k(m) can be written as

X̂k(m) = xT UHhk + nk = uH
k hkXk(m)︸ ︷︷ ︸
desired signal

+
∑
l �=k

uH
l hkXl(m) + nk

︸ ︷︷ ︸
interference + noise

.

Now if Xk(m) are drawn i.i.d. from some zero-mean discrete probability dis-
tribution with E[|Xk(m)|2] = pk (see also (4.1)), then the SIR measured at
the antenna output of the kth logical receiver (over a sufficiently long frame
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interval) yields

SIRk(p,U) =
pkuH

k Rkuk∑K
l=1
l �=k

pluH
l Rkul + σ2

k

, 1 ≤ k ≤ K (4.10)

where the rank 1 matrix Rk = hkhH
k , 1 ≤ k ≤ K, is called the spatial

covariance matrix. We point out that if the channels are rapidly time-varying,
the spatial covariance matrix Rk can be defined to be Rk = E[hkhH

k ], in
which case Rk may have full rank.

Now let us turn our attention to the up-link channel from mobile nodes
to the base station. As before, it is assumed that there is one logical link
per each wireless link, and that there are K = N − 1 users (flows) labeled
by 1, . . . , K. We use the same notation for the beam-forming vectors and
channel signatures as in the case of the down-link channel. When compared
with the down-link case, the roles in the up-link scenario are, in a sense,
reversed with the antenna array acting as a linear receiver. Indeed, given an
arbitrary slot m, the soft-decision variable is X̂k(m) = uH

k y where y ∈ CW

is a vector whose jth entry is a sample of the received signal at the jth
antenna element. As in the case of the down-link channel, each entry of y
results from a superposition of different transmit signals corrupted by zero-
mean Gaussian noise except that now each transmit signal is distorted by a
user-specific channel signature. Thus, y =

∑K
l=1 hlXl(m) + n from which it

follows that

X̂k(m) = uH
k

K∑
l=1

hlXl(m) + uH
k n = uH

k hkXk(m)︸ ︷︷ ︸
desired signal

+uH
k

∑
l �=k

hlXl(m) + nk

︸ ︷︷ ︸
interference + noise

where n ∈ CW consists of the Gaussian noise samples at each antenna ele-
ment and nk = uH

k n. Note that the interference term at the output of the
kth logical receiver depends on the channel signatures of all other users but is
independent of their beam-forming vectors. In the down-link channel, the sit-
uation is reversed with the interference term depending on the beam-forming
vectors of all other users and being independent of their channel signatures.
Thus, with the same assumptions on transmit symbols as before, we obtain

SIRk(p,U) =
pkuH

k Rkuk∑K
l=1
l �=k

pluH
k Rluk + σ2

k

, 1 ≤ k ≤ K (4.11)

where σ2
k is the noise variance. In fact, since ‖uk‖2 = 1 for each 1 ≤ k ≤ K,

we actually have σ2
1 = · · · = σ2

K . To keep the model as general as possible
though, the variances are allowed to be different. Note that in the down-link
channel, the noise variances are in general different due to the existence of
different receivers.
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The best network performance can be achieved by jointly optimizing
transmit powers and beam-forming vectors [63]. The theory presented in
this book, however, targets networks with a classical approach of power con-
trol for fixed beam-formers. Due to its simplicity, this approach may be of
interest in practice. A very simple and quite popular strategy is to choose
uk = hk, 1 ≤ k ≤ K, in which case beam-forming vectors are said to be
matched to channel signatures. As a consequence, if the channel signatures
are fixed, so also are the beam-forming vectors. Moreover, both (4.10) and
(4.11) are special cases of (4.2) with Vk and Vk,l ≥ 0 given by

Vk = uH
k Rkuk and Vk,l =

⎧⎪⎨
⎪⎩

uH
l Rkul down-link, k �= l

uH
k Rluk up-link, k �= l

0 k = l .

From this, we can obtain the channel state matrix V defined by (4.4). It is
interesting to point out that if V with vk,l = uH

k Rluk is the channel state
matrix for the up-link channel,6 then VT is the channel state matrix for
the down-link channel. This fact gives rise to the so-called duality theory
for down-link and up-link multiuser beam-forming [63, 64]. This theory pro-
vides a framework for jointly optimizing power control and beam-forming in
wireless networks.

A Distributed Network Based on Code Division Multiple Access

Finally we illustrate the definitions by considering a distributed wireless net-
work based on code division multiple access (CDMA). We assume that all K
logical links are perfectly synchronized as described in Sect. 4.3.

Let J ≥ 1 be a common length of signature sequences, and suppose that
logical link k ∈ K(n) is assigned a signature sequence sk with ‖sk‖2 = 1,
which is a vector in CJ . In every time slot, say slot m, the logical transmitter
on link k multiplies the signature sequence sk by an information-bearing
symbol Xk(m) and transmits the resulting sequence elements at a rate of
J/T . Note that the transmission rate is increased by the factor J , which is
referred to as the spreading factor. Due to the perfect synchronization, we
can drop the time index m and consider a discrete-time model where the
logical receiver on link k ∈ K(n) originating at some node n ∈ N observes a
vector of J samples yk given by

yk = hk,kskXk︸ ︷︷ ︸
desired signal

+ hk,k

∑
l∈K(n),l �=k

slXl

︸ ︷︷ ︸
interference 1

+
∑

l/∈K(n)

hk,lslXl

︸ ︷︷ ︸
interference 2

+ n︸︷︷︸
noise

, k ∈ K(n) .

Here, n is a zero-mean noise vector with E[nnH ] = σ2I, hk,l ∈ C with
|hk,k| > 0 is the channel coefficient between the logical transmitter of link
6 This is true if Vk = 1 for each 1 ≤ k ≤ K.
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l and the logical receiver of link k, interference 1 is caused by other links
originating at node n and interference 2 is due to all other links. Note that
if l ∈ K(n) in the equation above, then hk,l = hk,k. In words, if logical link
l originates at the same node as link k �= l, then the impact of the transmit
signal from link l at the output of the kth receiver is hk,kslXl.

In the discrete-time domain, CDMA receivers are vectors in CJ . Let ck

be the logical receiver of link k with |〈ck, sk〉| = 1. Then, the soft-decision
variable X̂k = 〈ck,yk〉 yields

X̂k =
∑
l∈K

hk,l〈ck, sl〉Xl + nk

= hk,k〈ck, sk〉Xk + hk,k

∑
l∈K(n),l �=k

〈ck, sl〉Xl +
∑

l/∈K(n)

hk,l〈ck, sl〉Xl + nk

where nk = 〈ck,n〉 and k ∈ K(n). Thus, E[nk] = 0 and E[|nk|2] = ‖ck‖2
2σ

2 =
σ2

k. Considering (4.1) and (4.2), we see that the signal-to-interference ratio
at the soft-decision variable X̂k is

SIRk(p) =
|hk,k|2pk∑

l �=k |hk,l|2pl|〈ck, sl〉|2 + σ2
k

=
pk∑

l∈K(n)
l �=k

pl|〈ck, sl〉|2 +
∑

l/∈K(n)
|hk,l|2
|hk,k|2 pl|〈ck, sl〉|2 + σ2

k

|hk,k|2
, k ∈ K(n) .

Therefore, the channel state matrix V defined by (4.4) is given by

(V)k,l = vk,l =

{ |hk,l|2
|hk,k|2 |〈ck, sl〉|2 l �= k

0 l = k

and the effective noise vector is z = ( σ2
1

|h1,1|2 , . . . ,
σ2

K

|hK,K |2 ).



5

Resource Allocation Problem in

Communications Networks

This chapter formulates the resource allocation problem for wireless networks.
Before that, however, we briefly discuss the fundamental trade off between
efficiency and fairness in wired networks. This trade off eventually led re-
searchers to consider the problem of maximizing the sum of increasing and
strictly concave utility functions of source rates. We review some existing
solutions to this problem and explain the insufficiency of these solutions in
case of wireless networks. Section 5.2 reformulates the problem to better cap-
ture the situation encountered in wireless networks. We will argue in favor
of MAC-layer fair policies that have already been used in wired networks
as a basis to achieve end-to-end fairness. We precisely define the concept of
joint power control and link scheduling as well as introduce the notion of
the feasible rate region. It is shown that this set is not convex in general,
which makes the optimization of wireless networks a fairly tricky task. The
utility-based power control problem is formulated in Sect. 5.2.4. In particu-
lar, we introduce a class of increasing and strictly concave utility functions
of link rates for which the power control problem can be converted into a
convex optimization problem. The reader will realize a strong connection to
the results of the first part of the book because the inverse functions of the
considered utility functions are log-convex functions. Finally, we will utilize
some results of Chapt. 2 to obtain valuable insights into the problem of joint
power control and link scheduling.

5.1 End-to-End Rate Control in Wired Networks

A standard problem in network design concerns how the available bandwidth
should be shared between competing flows to meet some share objectives [56,
65, 58, 57, 49] (and references therein). One possible objective is to allocate
rates to the set of flows so as to maximize the total throughput subject to
link capacity constraints. The main drawback of this strategy is that it may
be quite unfair in the sense that some flows (users) may be denied access to
the links [65]. Therefore, any rate control scheme must address the issue of
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fairness. One of the most common ideas of fairness is max-min fairness. The
idea behind the max-min approach is to treat all users as fairly as possible
by making their rates as equal as possible [65]. The main drawback of this
approach is that such “perfect fairness” is usually achieved at the expense
of a considerable drop in efficiency expressed in terms of total throughput.
Indeed, there seems to be a fundamental trade off between throughput and
fairness, with the throughput-optimal policy and max-min fair policy being
two extremes of this trade off [58]. A common approach to balance the issue
of fairness and efficiency is to maximize the aggregate (overall) utility of rate
allocations represented through continuously differentiable, increasing, and
strictly concave functions (the law of diminishing returns) [56, 65, 57].

In this section, we briefly discuss the utility maximization problem in
wired networks and summarize some interesting results. In the next section,
we build on these results to formulate the utility maximization problem in
wireless networks.

5.1.1 Fairness Criteria

Consider a network with an established topology (N, L) and fixed routes for
each flow. Let φl(s) with φl(s) = 0 if l /∈ L (no traffic is routed over nonexis-
tent links) be a routing variable so that the product φl(s)νs is the expected
data rate of flow s ∈ S going through link l ∈ L. Notice that in the special case
of single-path routing, φl(s) = 1 if flow s goes through link l and φl(s) = 0
otherwise. Let ν = (ν1, . . . , νS) be a vector of source rates. Then, the problem
of end-to-end network utility maximization can be stated as follows

max
ν≥0

U(ν) subject to ∀l∈L

∑
s∈S

φl(s)νs ≤ Cl (5.1)

where Cl denotes a fixed capacity of wired link l ∈ L and U : RS
+ → R is a

continuous, concave (strictly increasing in each entry) function representing
the total utility of all flows. It is important to notice that link capacities
are fixed and that flows can share wired links over both time and frequency.
Furthermore, notice that (5.1) deals with the expected traffic and thus does
not preclude the existence of traffic queues at the nodes. Any vector of source
rates ν ≥ 0 satisfying the link capacity constraints in (5.1) is called feasible.

The standard formulation of network utility maximization for elastic traf-
fic is to maximize the sum of individual sources’ utilities subject to the link
capacity constraints [56]. In this case, U(ν) is of the form

U(ν) =
∑
s∈S

Us(νs), Us : R+ → R (5.2)

where Us is a continuously differentiable, strictly increasing, and concave
function. Choosing Us(x) = x, x ≥ 0, for every s ∈ S turns (5.1) into the
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problem of maximizing the total end-to-end throughput. In general there are
infinitely many throughput-optimal allocations for a given network topology.
However, simple examples show that a necessary condition for attaining the
maximum is that, roughly speaking, relatively long flows are allocated zero
source rates. Therefore, throughput optimal policies are said to be unfair.
The problem can be illustrated by means of a network with three flows and
two links as depicted in Fig. 5.1.

Flow 3
C1 C2

Flow 1 Flow 2

Fig. 5.1. Three flows compete for access to two links [58, 1]. Whereas flows 1
and 2 are one-link flows going through links 1 and 2, respectively, flow 3 uses both
links. The links have fixed capacities C1 and C2, respectively. Clearly, the maximum
total throughput is C1 +C2 and, in the maximum, the longer flow must be shut off
(ν3 = 0) so that the one-link flows can be allocated rates of ν1 = C1 and ν2 = C2. In
contrast, if C1 ≤ C2, the max-min fair allocation is ν1 = C1/2, ν2 = C2 −C1/2 and
ν3 = C1/2. Thus, the total throughput is C2 + C1/2 which is strictly smaller than
C1 + C2. Note that if C1 = C2, then all source rates are equal under the max-min
fair solution.

A contrary approach is to make the flow rates as equal as possible, which leads
us to the concept of max-min fairness: A feasible flow rate vector ν is defined
to be max-min fair if any rate νs cannot be increased without decreasing some
νr, r �= s, which is smaller than or equal to νs [1]. It is well known that the
max-min fair rate allocation is unique when the number of resources and
the number of flows are both finite. Furthermore, it can be derived using
the following simple procedure: Starting from a zero rate allocation, increase
uniformly the rate of each flow until the capacity constraint of some link is
achieved. Freeze the rate allocations of the flows going through this link and
continue the procedure for the remaining flows until all flows are constrained
(e.g., [1, p. 526]).

The max-min fair approach is a user-centric approach in the sense that
all users are treated fairly. In fact, we see from the definition above that,
under the max-min fair policy, no flow is allocated a higher rate at the ex-
pense of other flows. This corresponds to an ideal ”social” network, where
all flows (users) are provided with data rates that are as close to each other
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as possible, regardless of how much resources each flow needs. As a result,
a significant drop in the overall throughput should be expected, especially if
there exist long flows going through many bottleneck links. Recall that a link
l ∈ L is a bottleneck link with respect to a rate vector ν for a flow s ∈ S if∑

s∈S φl(s)νs = Cl and νs ≥ νs′ for all flows s′ going through link l [1]. For
instance, considering the example in Fig. 5.1 shows with C2 > C1 that the
bottleneck links of flows 1, 2 and 3 with respect to the max-min fair allocation
are links 1, 2 and 1, respectively.

It is a matter of controversy whether the max-min fair rate allocation is
desirable. As illustrated above, under the max-min fair solution, some flows
may consume significantly more resources than others. Generally, the problem
is how to balance between fairness and the utilization of resources. This led
researchers to look for alternative ways of sharing network resources. The
appropriateness of max-min fairness as a resource sharing objective for elastic
traffic has been questioned in the landmark paper [56] where the notion of
proportional fairness was introduced. A vector of rates ν∗ is proportionally
fair if it is feasible (ν∗ is nonnegative and satisfies the capacity constraints)
and if for any other feasible vector ν, the aggregate of proportional change
is negative: ∑

s∈S

νs − ν∗
s

ν∗
s

≤ 0 .

Considering the Karush–Kuhn–Tucker [11] conditions for problem (5.1) with
(5.2), it may be shown that ν∗ is a proportional fair rate allocation if and only
if ν∗ solves (5.1) with U(ν) =

∑
s log νs. Thus, since log(x), x > 0, is a strictly

concave function, it may be inferred that proportional fair rates are unique.
Reference [56] has also considered a weighted version of the proportional
fairness criterion in which case flow rates νs are chosen so as to maximize
U(ν) =

∑
s ws log νs. The use of the weights has been advocated as a way

for each user (associated with a flow) to choose the charge per unit time that
the user is willing to pay. The user’s rate as a result of optimization increases
as the charge the user is willing to pay increases.

Instead of linear utility functions for throughput maximization, we have
logarithmic functions in case of proportional fairness. Since log(x) → −∞ as
x → 0, it is easy to see that each source rate is strictly positive under pro-
portionally fair allocation. But this is actually the strict concavity property
of the logarithm which forces fairness between sources. Indeed, whereas the
rate of increase of Us(x) = x is the same for all x ≥ 0, the rate of increase of
Us(x) = log(x) is decreasing in x (the law of diminishing returns), and hence
smaller source rates are favored in the latter case. On the other hand, if the
rate of increase does not decrease too rapidly, then the total throughput is
improved in comparison with the max-min fair allocation. For instance, con-
sider the network in Fig. 5.1. It may be easily verified that the proportional
fair rate allocation satisfies the following set of equations:
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⎧⎪⎨
⎪⎩

ν1 + ν3 = C1

ν2 + ν3 = C2

ν3 = ν1ν2
ν1+ν2

ν1, ν2, ν3 ≥ 0 .

Under the assumption of equal link capacities C1 = C2 = C, the solution
to the above set of equations is given by ν∗ = (2C/3, 2C/3, C/3). The total
throughput is 5C/3, which is smaller than 2C (maximum throughput) but
greater than 3C/2 (max-min fair throughput). So, in this example, the intro-
duction of a strictly concave utility function provides some balance between
efficiency and fairness.

The notion of proportional fairness has been generalized by [57]. This
generalization includes arbitrarily close approximation of max-min fairness.
To be more precise, let w = (w1, . . . , wS) be a positive vector, and let α
be a nonnegative constant. Then a vector of rates ν∗ is said to be (w, α)-
proportionally fair if it is feasible and for any other feasible vector ν:∑

s∈S

ws
νs − ν∗

s

ν∗α
s

≤ 0 . (5.3)

Obviously, if α = 1 and w = 1, ν∗ is a proportionally fair rate vector.
Further examination reveals that (5.3) is equal to ∇U(ν∗)T (ν − ν∗) with
U(ν) =

∑
s Us(νs) and Us : R++ → R given by

Us(x) =

{
ws

x1−α

1−α α > 1
ws log x α = 1 .

(5.4)

Consequently, since U : RS
++ → R is a strictly concave function and U(ν) =

U(ν∗) + ∇U(ν∗)T (ν − ν∗) + 1
2 (ν − ν∗)T∇2U(ν∗)(ν − ν∗) + o(‖ν − ν∗‖2

2),
we have U(ν) ≤ U(ν∗) + o(‖ν − ν∗‖2

2) for every feasible rate vector ν. So
ν∗ is a local maximum of U . However, as U(ν) =

∑
s Us(νs) with (5.4)

has a unique global maximum, it follows that the (w, α)-proportionally fair
rate vector maximizes U(ν) =

∑
s Us(νs) over the set of all feasible rate

vectors. The converse holds as well, which can be deduced from the associated
Karush–Kuhn–Tucker conditions [57]. Summarizing, we can say that ν∗ is
(w, α)-proportionally fair if and only if ν∗ solves (5.1) with U(ν1, . . . , νS) =∑

s Us(νs) and Us(x) given by (5.4). Furthermore, it is shown in [57] that the
(1, α)-proportionally fair rate vector approaches the max-min rate vector as
α → ∞ (see also Observation 5.8).

5.1.2 Algorithms

Given a network with fixed link capacities and a fixed number of sources
(flows), the max-min fair rates for these sources can be easily computed by
employing the filling procedure described in the previous section. Such a so-
lution may be appropriate for small networks with an omniscient network
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controller that could easily compute the max-min fair rates and update them
as the number of flows changes. Since this is impractical for moderately large
networks, there are many publications on distributed max-min fair algorithms
that dynamically adjust the source rates as the number of flows changes (see
[1], pp. 528–530 and references therein). Most of those algorithms require
some coordination and exchange of information between network nodes. An
interesting exception is an approach suggested by [66, 67], where the authors
show that max-min fairness can be achieved by performing per-flow fair queu-
ing on all network links. More precisely, in this approach, each link offers a
transmission slot to its flows by polling them in round-robin order. In ad-
dition, node-by-node window flow control is performed to prevent excessive
packet queues at the network nodes. Now as the window size increases, the
source rates approach the max-min fair rates. Finally, we mention reference
[68]. This paper provides an asynchronous distributed algorithm that con-
verges to the exact max-min fair rate allocation. In the proposed scheme,
each source progressively discovers its rate allocation by comparing it with
the “advertised rate” of the links on its route.

Note that the max-min fair utility function is not differentiable so that
some standard optimization methods cannot be applied in this case. In con-
trast, proportionally fair objectives are continuously differentiable, increasing
and strictly concave, therewith admitting a convex optimization formulation
with zero duality gap. In [56], the authors proposed two algorithms (primal
and dual) that arbitrarily closely approximate the (w, 1)-proportionally fair
rates. The primal algorithm changes the rate of flow s ∈ S according to the
following system of differential equations:

d

dt
νs(t) = κ

(
ws − νs(t)

∑
l∈L

φl(s)µl(t)
)

µl(t) = pl

(∑
s∈S

φl(s)νs(t)
)

with φl(s) ∈ {0, 1} (single-path routing) where κ is a positive constant and
pl(x) = (x − Cl + ε)+/ε2, ε > 0, is a nonnegative, continuous, and increasing
function. In words, each source, say source s, gets feedback µl(t) (related to
residual capacity on link l) from the links and gradually changes its rate as
follows: Increase the rate linearly proportional to ws and decrease it multi-
plicatively proportional to total feedback. In the dual algorithm, instead of
rates, the Lagrange multipliers (shadow prices) µl(t) are adjusted gradually,
with rates given as functions of the shadow prices. Algorithms for computing
(w, α)-proportionally fair rates have been developed in [57]. Here, each source
adjusts its window size based on the total delay. This stands in contrast to
[56] where flow rates are calculated explicitly.

Another interesting work is [65], where the static regime of a network with
perfectly fluid flows is considered. Given a fixed end-to-end window control,
the authors have showed that different fair rate allocation objectives can be
met by implementing different queuing disciplines in network nodes, provided
that the network is not too congested. For instance, it turns out that if round
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trip delays are negligible, then the static rates under the FIFO (first in first
out) queuing discipline are (w, 1)-proportionally fair rates with the weights
being equal to the window sizes. In contrast, the maximum throughput al-
location is achieved with longest queue first policy if the round trip delay is
small. There is a similar conclusion for (w, 2)-proportional fair rates if each
node maintains per-flow queuing with service rate for each queue propor-
tional to the square root of the queue size. These results as well as the work
of [66, 67] show that network-wide (end-to-end) fairness can be also achieved
if each node executes an appropriate contention resolution algorithm. These
results may serve as a motivation for MAC layer fair power control algorithms
for wireless networks presented later in this book.

5.2 Problem Formulation for Wireless Networks

In the previous section, we have briefly outlined the problem of rate control
in wired networks. In what follows we turn our attention to wireless networks.
The first question which may arise is the following: Is there something fun-
damental about the nature of wireless networks that prevents us from reusing
the well-developed techniques for wired networks? In fact, one of the most
important unique features was already mentioned in Sect. 4.3.3, namely that
the data rate achievable on any link is a nonlinear function of global vari-
ables such as transmit powers and channel states of all links. Moreover, the
channel state matrix V ≥ 0 can be only partially influenced (if at all) since
it depends on relative locations of nodes and other objects (scatters) in the
vicinity of a network. Therefore, even if the nodes are stationary and the net-
work topology is fixed, V is not known in advance as the channel states can
vary due to the mobility of these objects. In a mobile network environment
with nodes changing their positions permanently, the network topology is not
known in advance either and the process of route discovery and maintenance
may consume a lot of wireless resources.

Due to the variation of the wireless radio environment, the capacity of
wireless links exhibits an ephemeral and dynamic nature. This stands in
clear contrast to wired networks where the capacity of any link is fixed and
independent of the transmission rate on other links. In wireless networks,
nodes in general do not even know the exact capacities of their own links
because, as mentioned above, the capacity of each link depends on some global
network variables. Due to this mutual dependence, it is clear that the scope
of the utility maximization problem (5.1) is limited for wireless networks.
Furthermore, when designing protocols and algorithms for wireless networks,
coordination between nodes should be reduced to a minimum in order to
save wireless resources. This suggests the development of smart strategies for
resource allocation and interference management that achieve network-wide
fairness with minimum global coordination. In this book, we argue in favor
of power control and link scheduling policies designed to ensure fairness at
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the MAC layer (MAC layer fairness; see Sect. 5.2.4 for more details). This
provides a better utilization of scarce resources. In a sense, such an approach
can be viewed as an extension of the work done by [66, 67, 65] to wireless
networks.

Remark 5.1. It must be emphasized that the problem of maximizing the ag-
gregate utility of flow (or link) rates is not appropriate for all scenarios. For
instance, if the power supply is a bottleneck (like in sensor networks), then
the throughput and fairness performance should be balanced against power
consumption to prolong battery life [69, 45, 46]. Considering only the through-
put performance would discharge the batteries after a relatively short time.
Therefore, the rate control strategies presented in this book are not applica-
ble to wireless networks where mobile devices are equipped with low-capacity
batteries.

The following section introduces the notion of joint power control and link
scheduling. This model is used in Sect. 5.4.1 to provide some interesting
insights into the design of throughput-optimal MAC policies. However, as
mentioned before, the main focus is on the power control problem for a given
link scheduling policy. In the face of implementation constraints, this seems
to be a reasonable approach in many cases of practical interest.

5.2.1 Joint Power Control and Link Scheduling

Now let us introduce the notion of joint power control and link scheduling
(JPCLS). Our definition is tailored to better illustrate throughput-optimal
MAC policies discussed in Sect. 5.4.1.

Roughly speaking, a JPCLS policy is a (distributed or centralized) mech-
anism of the MAC layer that divides every frame into a finite number of
perfectly synchronized subframe intervals, assigns a group of logical links to
each subframe, and allocates transmit powers to them. In what follows, we
formalize these ideas. To this end, let B be a bounded interval on the real
line, and let Λ := {1, 2, . . . , |Λ|}, where |Λ| is usually significantly smaller
than the number of time slots M (symbol intervals) in each frame. Assume
that A = {Bn : n ∈ Λ} is a given system of subsets of B with⋃

n∈Λ

Bn = B ∀n,m∈Λ
n�=m

Bn ∩ Bm = ∅ .

In words, A partitions B into a finite number of disjoint sets Bn. We use
µ : A → [0, 1] to represent any real (set) function such that

∀n∈Λ µ(Bn) ≥ 0 µ(∅) = 0 µ
(⋃

n∈Λ

Bn

)
=
∑
n∈Λ

µ(Bn) = µ(B) = 1 . (5.5)

Furthermore, with each logical link k ∈ K, we associate a set function pk :
A → R+. For any given B and A, any functions µ : A → [0, 1] (satisfying
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(5.5)) and p = (p1, . . . , pK) : A → RK
+ have the following interpretation: The

expected data rate (in nats per channel use) on link k ∈ K is equal to

νk(p, µ) =
∑
n∈Λ

µ(Bn)Φ(SIRk(p(Bn)))

where

SIRk(p(Bn)) =
pk(Bn)Vk∑K

l=1 pl(Bn)Vk,l + σ2
k

, n ∈ Λ . (5.6)

Note that in the special case when µ(B1) = µ(B) = 1 and µ(Bn) = 0 for all
n > 1, we have SIRk(p(B1)) = SIRk(p) where SIRk(p) is defined by (4.2).

Definition 5.2. Given B and A, link scheduling refers to the operation of
choosing µ : A → [0, 1] satisfying (5.5), while power control determines p :
A → RK

+ . A mechanism that jointly determines the pair

(p, µ) : A × A → R
K
+ × [0, 1] (5.7)

is called joint power control and link scheduling (JPCLS). If µ(B1) = µ(B) =
1, then we say that there is no link scheduling involved.

Throughout the book, we adopt the following assumptions and interpreta-
tions of the above definitions.

(i) B is referred to as a frame, while Bn, n ∈ Λ, is the nth subframe. The
subframes are ordered in any particular way.

(ii) p(Bn) is a vector of transmit powers allocated to links in subframe Bn.
If pk(Bn) > 0, we say that link k is active in Bn, otherwise it is said to
be idle.

(iii) µ(Bn) is the fraction of the frame occupied by subframe Bn. Also, µ(Bn)
can be viewed as the relative frequency at which the power vector p(Bn)
is utilized. If µ(Bn) = 0, then the power vector p(Bn) is not utilized.

(iv) SIRk(p(Bn)) is the signal-to-interference ratio at each soft-decision vari-
able in subframe Bn. It is assumed that every nonempty subframe is
large enough (in terms of the number of transmitted symbols) to ensure
that SIR defined by (5.6) is close to the time average SIR. If µ(Bn) = 0,
then the average SIR in Bn is equal to zero.

As a consequence, Φ(SIRk(p(Bn))) is equal to the time average rate on link k
in subframe Bn ∈ A. Choosing µ in Definition 5.2 is equivalent to determin-
ing the lengths of the subframes, and therefore this operation can be viewed
as time slot management, where groups of symbol intervals are merged to
form subframes. In practice, there is usually a fixed division of a frame into
subframes whose lengths are multiples of T (the length of a single symbol in-
terval). Link scheduling then refers to the operation of assigning links to the
subframes. Power control in turn allocates transmit powers to links in each
subframe. Link scheduling may be implemented in a centralized or decentral-
ized manner. In the first case, there is a central scheduler that coordinates
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time slot management and link assignment across the network. A distributed
implementation requires coordination between local link schedulers at every
node.

Remark 5.3. In this book, the definition of link scheduling is slightly differ-
ent from that described above. According to Definition 5.2, link scheduling
determines the lengths of all subframes and assigns all links to each of them.
Power control determines transmit powers of all links in each subframe. In
other words, the actual task of assigning links to subframes is carried out by
power control if we assume that a link is assigned to some subframe if and
only if it is active in this subframe.

Power Constraints under Link Scheduling

In Sect. 4.3.2, we have specified constraints on transmit powers that can be
dissipated over the duration of the frame interval when no link scheduling is
involved. The average transmit power on each link is assumed to be approxi-
mately equal to the expected transmit power in any symbol interval. Thus, if
the expected transmit power in every symbol interval is kept constant, then
the expected transmit power over a frame period decreases when the link ac-
tive time decreases. So the question arises whether the links can compensate
the power loss by increasing their (expected) transmit powers over the active
time periods. Formally, the question is which of the following should hold:∑

n∈Λ

p(Bn)µ(Bn) ∈ P (5.8)

or
∀n∈Λ p(Bn) ∈ P (5.9)

where p(Bn) is a vector of the expected transmit powers used in subframe
Bn. Hence, if subframes are sufficiently long, condition (5.8) limits the aver-
age transmit powers that can be dissipated over a frame interval. In contrast,
there are no constraints on the entries of p(Bn) which may become arbi-
trarily large as µ(Bn) → 0. This implicitly requires amplifiers with an ideal
linear transfer characteristic. However, practical amplifiers have nonlinear
characteristics and will (hopefully) go into saturation beyond a certain limit.
Therefore, from a practical point of view, it is reasonable to assume that (5.9)
holds. In this case, we say that transmit powers are subject to (MAC layer)
peak power constraints.

Note that if there are peak power constraints, the maximum average
transmit power decreases as time occupied by a link decreases. Thus, link
scheduling is less attractive in the case of peak power constraints. With these
constraints, it follows from the definitions above that the data rate on link k
under a JPCLS policy (p, µ) is



5.2 Problem Formulation for Wireless Networks 101

νk(p, µ) =
∑
n∈Λ

µ(Bn)Φ(SIRk(p(Bn))) (5.10)

where p(Bn) ∈ P for each n ∈ Λ. Note that whereas p in (4.7) is a vector of
transmit powers, p in (5.10) is a vector of set functions defined on A, each of
which is subject to the (MAC-layer) peak power constraints.

5.2.2 Feasible Rate Region

The set of all achievable data rate vectors ν(p) = (ν1(p), . . . , νK(p)) ∈ RK
+ is

called the feasible rate region. It is a set of all data rates that are achievable on
wireless links under a given coding strategy. Hence, this notion is distinct from
the information theoretic capacity region, which includes optimization over
all possible coding schemes. When no link scheduling is involved (µ(B1) = 1
and Λ = {1}), the feasible rate region C ⊂ RK

+ is given by

C := {ω ∈ R
K
+ : ω ≤ ν(p),p ∈ P} (5.11)

where P is the set of feasible power vectors defined by (4.6).
When dealing with the utility maximization problem, one of the main

difficulties stems from the fact that the feasible rate region is not a convex
set in general. This stands in clear contrast to wired networks where the
capacity region is a box. To see that C is not convex in general, let ω ∈ C
be arbitrary. Hence, by the definition of C, it follows that there exists p ∈ P
such that ωk ≤ Φ(SIRk(p)) for each k ∈ K. Since Φ : R+ → R+ is a bijection
with φ(0) = 0 (Definition B.4), we can rewrite this set of inequalities using
the inverse function Φ−1(x) as

Φ−1(ωk)
( K∑

l=1

vk,lpl + zk

)
≤ pk, k ∈ K .

In vector form, this becomes

Γ(ω)z ≤ (I − Γ(ω)V)p (5.12)

where Γ(ω) = diag(Φ−1(ω1), . . . , Φ−1(ωK)) and z > 0 is the noise vector
defined by (4.5). Now Theorem A.35 implies that if ρ(Γ(ω)V) < 1, there
exists a unique vector p(ω) = (p1(ω), . . . , pK(ω)) ≥ 0 given by1

p(ω) := (I − Γ(ω)V)−1Γ(ω)z . (5.13)

Conversely, if p(ω) ≥ 0 exists, then ω ≥ 0 is unique and ρ(Γ(ω)V) < 1.
In other words (see also Lemma 2.10), there exists a bijective function from

1 Note that the kth coordinate of p(ω) is zero if and only if ωk = 0. Thus, for
every ω > 0 with ρ(Γ(ω)V) < 1, there is a unique positive vector p(ω) > 0.
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C onto P such that for every p ∈ P, there is exactly one ω ∈ C such that
p = p(ω). Considering this, it follows from (5.12) that ω ∈ C if and only if
p(ω) ∈ P, and hence one has

C = {ω ∈ R
K
+ : p(ω) ∈ P} . (5.14)

Comparing this with the results of Chapt. 2 reveals that p(ω) is a special
form of (2.4) with X(ω) = Γ(ω)V and b(ω) = Γ(ω)z (see also Sects. 2.3
and 2.3.3). Using the terminology of the first part of the book, the feasible
rate region is nothing but the feasibility set when the parameter vector ω is
chosen to be a vector of link rates.2 The nonnegative solution in (2.4) is a
unique power vector for which the data rate allocation is equal to ω ≥ 0.

It follows from Theorem 2.5 that each element of p(ω) would be a log-
convex function of ω if Φ−1(x) was log-convex. Unfortunately, for Φ(x) =
log(1 + x), x ≥ 0, we have Φ−1(x) = ex − 1, x ≥ 0, which is not log-convex on
any interval I ⊆ R+. This is because

d2θ

dx2
(x) = − ex

(ex − 1)2
< 0, x > 0, θ(x) = log(ex − 1) .

Although the log-convexity property is not necessary for the feasible rate
region to be a convex set, Example 2.4 shows that the feasible rate region
is indeed not convex in general. The non-convexity of C makes the utility
maximization problem over a joint space of transmit powers and link sched-
ulers significantly more challenging and, in general, difficult to solve. Indeed,
if C is not a convex set, then a throughput-optimal MAC policy (involving
joint power control and link scheduling (JPCLS) under some peak power con-
straints as discussed in Sect. 5.2.1) is related to the problem of computing
the points of the convex hull of C. Recall that the convex hull of a set of
points is the intersection of all convex sets containing this set. Therefore,

C ⊆ C̃ := ConvexHull(C) (5.15)

where C̃ is the set of data rates being achievable by means of some feasible
MAC policy. This immediately follows from (5.10), which says that data rates
under any JPCLS policy is equal to a convex combination of some points in
C. In Sect. 5.4.1, we define throughput-optimal MAC policies as those policies
that achieve some points on the boundary of C̃. Consequently, the problem
of finding throughput-optimal policies is in general a non-convex problem of
combinatorial nature that is difficult to solve [70].

Finally we point out that if each entry of the channel state matrix V
(note that V represents the current state of the channel) follows an ergodic
stochastic process, taking values on a finite state space V, with time average

2 More precisely, C is the closure of the feasibility set with γ(x) = ex − 1 as the
latter set does not contain the boundary vectors with zero entries.
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probabilities pV, then the set of all average rate vectors (averaged over all
channel state matrices) is given by [71, 72]:

C =
∑
V∈V

pVC̃(V)

where C̃(V) is used to denote the convex hull of the feasible rate region
when the channel state matrix V is given. However, notice that the feasible
rate region C (and not C) serves as a basis for the development of dynamic
throughput-optimal policies.

5.2.3 End-to-End Window-Based Rate Control for Wireless
Networks

Having introduced the notion of the feasible rate region, we briefly discuss
the end-to-end window-based rate control problem for wireless networks. This
discussion should be primarily considered as a motivation for the power con-
trol problem formulated in the next section. For a more detailed presentation
of this approach, the reader is referred to [49, 50].

One of the major difficulties in achieving end-to-end fairness in wired
networks is that, in the optimum, any source rate is a function of not only
routing variables but also of other source rates. In wireless networks, an
additional problem is that link capacities are not fixed but depend on the
interference levels, which in turn depend on all transmit powers. We may
therefore conjecture that the network performance can be improved by im-
plementing a cross-layer protocol that couples an end-to-end window flow
control with power control in the lower layers of the protocol stack. Such a
cross-layer protocol could work as follows: Each source gets implicit feedback
from the network such as round-trip delay or throughput and regulates the
source rate by adjusting its window size that limits the maximum number of
packets to be transmitted but not yet acknowledged. Then, a power control
protocol utilizes some information from the transport layer to determine the
pair (µ,p) defined by (5.7). Note that each logical link is associated with a
flow and that there is a per flow queuing at every node.

Let A = (ak,s) ∈ R
K×S
+ be a matrix such that ak,sνs is the expected

traffic of flow s ∈ S going through logical link k ∈ K. Thus, ak,s = φl(s) (see
Sect. 5.1) if logical link k shares wireless link l and ak,s = 0 otherwise. Note
that each row of A has exactly one positive entry since flows cannot share
logical links. As before, assume that the objective is to maximize the sum
of sources’ utilities subject to link capacity constraints given a channel state
matrix V. A formal problem formulation is given by (5.1) except that now
the vector of logical link rates Aν must lie in the convex hull of the feasible
rate region. Therefore,

ν∗ = argmax
ν

∑
s∈S

Us(νs) subject to Aν ∈ C̃ (5.16)
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where C̃ is defined by (5.15) and the maximum is assumed to exist.
Now suppose for the moment that Φ(SIRk(p)) is a concave function of p ≥

0 for each k ∈ K and3 that Slater’s condition holds [11]. By (4.8) and (5.11),
the concavity property implies that C = C̃, from which it follows that power
control with all logical links being active concurrently is an optimal policy.
Under these assumptions, the problem in (5.16) is convex without performing
the convex hull operation and the Karush–Kuhn–Tucker conditions provide
necessary and sufficient conditions for optimality. Therefore, solving (5.16) is
equivalent to satisfying the complementary slackness condition and finding a
stationary point of the Lagrangian function [11, 50].

In what follows, let us assume that the complementary slackness condi-
tions are satisfied for any primal and dual optimal solutions. We see that
the link capacity constraints in (5.16) can be written as ∀s∈S∀k∈Ksνs ≤
Φ(SIRk(p)),p ∈ P, where Ks ⊆ K is a set of those logical links through
which flow s ∈ S passes. So, the Lagrangian function associated with the
problem is

L(ν,p, λ) =
∑
s∈S

Us(νs) − λT Aν +
∑
k∈K

λkΦ(SIRk(p))

where λ = (λ1, . . . , λK) ≥ 0 are dual variables, p ∈ P and ν ≥ 0. We
see that whereas the last addend on the right-hand side depends on p, the
first two addends are independent of transmit powers. Thus, by linearity of
the differentiation operator, the problem of finding a stationary point of the
Lagrangian function can be decomposed into two problems coupled by the
optimal Lagrange multiplier vector λ∗:

ν∗ = arg max
ν∈RS

+

∑
s∈S

Us(νs) − λ∗T Aν

p∗ = arg max
p∈P

∑
k∈K

λ∗
kΦ(SIRk(p)) .

(5.17)

The first subproblem can be implicitly solved by employing an appropriate
end-to-end window-based congestion control algorithm for different functions
Us(x), such as those given by (5.4) [57, 50, 73]. For example, TCP Vegas has
been shown to solve the first subproblem for logarithmic utility functions
with the associated dual variable λk being the queuing delay along link k.
Therefore, the Vegas source rates are (w, 1)-fair where the weight ws lin-
early increases with the round-trip propagation delay for source s ∈ S. The
equilibrium backlogs at the links provide the optimal Lagrange multipliers.
The second subproblem in (5.17) is to allocate transmit powers to interfering

3 If Φ(x) = log(1 + x), x ≥ 0, the concavity requirement is actually never satisfied
unless V = 0, that is, unless all links are mutually orthogonal. Therefore, for the
rest of this section, the reader can think of other functions that could satisfy the
concavity requirement.
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links so as to maximize a weighted sum of link rates. Under the assump-
tion of concavity, the problem is mathematically tractable and can be solved
using methods of convex optimization such as gradient projection methods.
Unfortunately, if Φ(x) = log(1 + x), x ≥ 0, the problem is not convex in gen-
eral. In order to make it tractable, it is a common practice [49] to assume
that Φ(x) = log(x), x > 0, which is equivalent to assuming the high SIR
regime (Sect. 5.4.2). The constraint set is then a convex set since the inverse
of log(x), x > 0, is log-convex on R (see the previous section as well as Sect.
5.3). Furthermore, as shown in Chapt. 6, log(SIRk(es)) is a concave function
of s = logp.

In [49], the stationary point of the Lagrange function is found iteratively
by a simultaneous application of a congestion control mechanism and a gra-
dient projection algorithm for the second subproblem, with the weights being
equal to the dual variables associated with the problem (the queuing delays
in case of TCP Vegas).

5.2.4 MAC Layer Fair Rate Control for Wireless Networks

The previous section illustrates how traditional TCP protocols may be cou-
pled with power control and link scheduling algorithms to enhance the net-
work performance in terms of some aggregate utility function. Upon receiving
information about queuing delays (the dual variables in case of TCP Ve-
gas), each source node updates its window size to adjust the source rate. At
the same time, a distributed MAC (medium access control) protocol assigns
groups of links to subframes and allocates transmit powers to them so as to
maximize a weighted sum of link rates. This is however still an end-to-end
control scheme, and therefore it has some important disadvantages common
to such schemes. The rates are adjusted with a period proportional to the
end-to-end round-trip delays, which are usually large in wireless networks.
As a result, such schemes can be expected to have slow convergence and
extensive rate oscillations. The latter one may cause large queues (excessive
memory) or data loss on congested links when intermediate nodes have no
means to limit the traffic generated by other nodes in their vicinity. In fact,
because of slow convergence, it is justified to claim that the determination
of correct rates would not be affordable if such a scheme was implemented
in dynamic wireless environments. Finally, the commonly raised argument in
favor of end-to-end schemes that they keep the network simple and scalable
by placing the complexity in the hosts hardly applies to wireless networks
where the number of flows per node is of a much smaller order than in the
Internet. Moreover, wireless networks have per-flow queuing for reasons of
scheduling and power control.

For these reasons (see also the discussion at the beginning of Sect. 5.2), we
argue in favor of MAC layer (also called per link) fairness with some kind of
node-by-node (or link-by-link) congestion control as described, for instance, in
[67, 1, 74, 75]. MAC layer fair mechanisms such as weighted fair queuing have
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already served as a basis for achieving end-to-end fairness in wired networks.
Due to the unique characteristics of wireless networks, however, it is clear that
MAC layer policies for wired networks cannot be simply reused in the wireless
environment. Actually, as pointed out by [76], MAC layer flows (one-hop flows
between neighboring nodes) in wireless networks have location-dependent
contention for resource allocation, and therefore have some commonalities
with network layer flows in wired networks in the sense that they experience
different contention.

The notion of MAC layer fairness is defined along similar lines to end-to-
end fairness in Sect. 5.2.3, except that instead of network flows, MAC layer
flows are considered. A MAC layer policy with node-by-node (or hop-by-hop)
congestion control may work as follows: At the beginning of every frame, a
(distributed) MAC controller chooses link rates ν∗ ∈ RK

+ such that4

ν∗ = arg max
ν

∑
k∈K

Uk(νk) subject to ν ∈ C̃ (5.18)

where Uk is a continuously differentiable, increasing and strictly concave func-
tion, and C̃ is the convex hull of C defined by (5.11). The utility function is
usually of the form Uk(x) = wkU(x) where wk is a nonnegative weight that
couples the MAC layer with a congestion control protocol for each link, and
therefore usually depends on the current queue states. In addition, at source
nodes, a simple window-based end-to-end congestion control may be used
to prevent excessive queues at the network nodes. A possible strategy for
choosing the weights inspired by the so-called back-pressure policy [77, 78] is

wk = max{u(k)
s − u

(k)
d , 0} (5.19)

where u
(k)
s ≥ 0 and u

(k)
d ≥ 0 are buffer occupancies at the source and des-

tination of link k, respectively. Thus, wk is zero if the queue occupancy at
the source node is smaller than the queue occupancy at the destination node.
The choice of the weights is beyond the scope of this book. We simply assume
that the weights are provided at the beginning of every frame according to
some strategy. Furthermore, it is assumed that all weights are positive, which
does not impact the generality of the analysis. However, we point out that the
process of determining the weights is an important issue and has a decisive
impact on the overall network behavior.

As mentioned in Sect. 5.2.2, optimal joint power and link scheduling poli-
cies are difficult to determine even in a centralized manner. For this rea-
son, practical MAC protocols are usually based on heuristic approaches that
attempt to avoid strong interference by activating neighboring links in dif-
ferent subframes. In particular, when nodes cannot transmit and receive si-
multaneously, wireless links assigned to the same subframe must constitute
4 Note that, beginning with this section, ν denotes a K-dimensional nonnegative

vector of link rates.
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a matching in the corresponding topology graph [62]. This can be achieved
by a suitable collision avoidance mechanism (see Sect. 4.2) to avoid strong
interference.

In this book, we neglect the problem of link scheduling and focus on the
power control problem. The only exception is Sect. 5.4 where some interesting
consequences of the results presented in Chapt. 2 on throughput-optimal
policies are discussed. For simplicity, it is assumed that no link scheduling
is involved, which means that Λ = {1} and µ(B1) = µ(B) = 1. This implies
that all links can be activated simultaneously without having a collision or,
equivalently, without causing strong interference. In particular, each node
can transmit and receive simultaneously over all its logical links.

Remark 5.4. Although this is not a particularly realistic scenario, we again
emphasize that the assumption does not impact the generality of the analysis
presented in this book. In fact, the extension to an arbitrary link scheduling
policy is straightforward. Due to the MAC layer peak power constraints (5.9),
it is clear that the power control problem under some link scheduling policy
decomposes into separate problems of the same type, each for one subframe.
The data rate on each logical link follows from (5.10) to be a linear combi-
nation of data rates achieved in each subframe, with the coefficients being
equal to the length of the subframes. In real networks, the computation of an
optimal power vector for each subframe makes sense only if the number of
subframes is relatively small. Alternatively, groups of links can be scheduled
in different frames which may be a reasonable approach when larger delays
are acceptable. Finally it is interesting to point out that if we had the average
power constraints in (5.8), the power control problem does not decompose
into separate problems for each subframe since then the power vectors for
different subframes are subject to a common power constraint.

5.2.5 Utility-Based Power Control

Under the above assumptions, the vector of data rates ν is confined to be an
element of the feasible rate region C defined by (5.11). Moreover, by (5.14)
and the discussion in Sect. 5.2.2, we know that there exists a bijective map
from the feasible rate region onto the set of feasible power vectors P. As an
immediate consequence of this, we can change the optimization domain in
(5.18) so as to arrive at an equivalent power control problem subject to the
power constraints:

p∗ =argmax
p∈P

∑
k∈K

Uk(νk(p)) = argmax
p∈P

∑
k∈K

Uk(Φ(SIRk(p))) (5.20)

where it is assumed that the maximum exists (see also below). Recall that,
unless otherwise stated, Φ(x) = log(1+x), x ≥ 0. Having found p∗, the MAC
layer fair rate on link k is given by Φ(SIRk(p∗)). Note that in comparison
with the original problem, we have only changed the optimization domain
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from C to P. Although other domains could be considered by using different
bijective mappings (see also the next section), the power domain appears to
be the most natural choice in case of wireless networks. If Uk(x) is of the
form given by (5.4) for some α > 0, the power vector p∗ defined by (5.20) is
referred to as a (w, α)-fair power allocation.

Although the functions in (5.4) are strictly concave, it may be easily
verified by computing the Hessian matrix for K = 2 that Uk(νk(p)) is in
general not concave with respect to the power vector p. Thus, the power
control problem in (5.20) is not convex. General-type nonconvex problems
are too difficult for numerical solution. The computational effort required to
solve such a problem by the best-known numerical methods may grow pro-
hibitively fast with the dimension of the problem, and there are serious the-
oretical reasons to conjecture that this is the intrinsic feature of non-convex
problems rather than a drawback of the existing optimization techniques.
The situation is further complicated when decentralized algorithms are de-
sired. Therefore, we slightly modify the traditional utility criteria, thereby
preserving monotonicity and strict concavity with respect to data rate. To
be precise, given a weight vector w ∈ RK

++, we consider the following class of
utility functions [53]

Uk(x) = wkΨ(Φ−1(x)), x > 0, wk > 0 k ∈ K (5.21)

and assume that the following conditions on Ψ(x) hold:

Definition 5.5 (Ψ-Conditions).

(i) Ψ : R++ → Q is a twice continuously differentiable and strictly increas-
ing function where Q is some open interval on the real line.

(ii) There holds

lim
x→0

Ψ(x) := −∞ ⇒ lim
x→0

Ψ ′(x) = lim
x→0

dΨ

dx
(x) = +∞ (5.22)

where the second limit follows by considering condition (i). This require-
ment guarantees that p∗ given by (5.20) is a positive vector, and hence
all links are assigned positive transmit powers in the maximum.

(iii) Ψe(x) = Ψ(ex) is concave on R. Since Ψ is twice differentiable and ex is
positive on R, this is equivalent to

Ψ ′′
e (x) =

d2Ψe

dx2
(x) ≤ 0, x ∈ R and Ψ ′(x) + xΨ ′′(x) ≤ 0, x > 0 .

(5.23)

We point out that twice differentiability of Ψ could be replaced by contin-
uous differentiability and the Lipschitz continuity condition on the gradient
of the aggregate utility function (see also Chapt. 6). The second condition
ensures that, in the maximum, each link is assigned a nonzero data rate.
However, the most important condition is the third one since it enables us to
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convert the utility optimization problem into a convex problem (Chapt. 6).
It is pointed out that a class of functions satisfying the Ψ -conditions forms
a proper superset of functions considered in [51, 51]. Indeed, these papers
considered a set of twice continuously differentiable and strictly increasing
functions Ψ : R++ → Q satisfying

−Ψ ′′(x)x
Ψ ′(x)

∈ [1, 2] .

Now it is easy to see that this condition follows from (5.23). The converse,
however, does not hold as the examples below will show.

It is important to notice that, with the Ψ -conditions and Φ(x) = log(1 +
x), x > 0, the utility function Uk(x) given by (5.21) is increasing and strictly
concave, and hence satisfies the fundamental properties of the traditional
utility functions defined in [57].

Observation 5.6. Let Φ(x) = log(1 + x), x > 0, and let Ψ satisfy the Ψ -
conditions. Then, Uk(x), x > 0, defined by (5.21) is an increasing and strictly
concave function.

Proof. It is clear that Uk is increasing so that we only need to show strict con-
cavity. To this end, let x̂, x̌ ∈ R++ be arbitrary. By concavity of Ψe, we have
(1−µ)Ψ(ex̂ −1)+µΨ(ex̌−1) ≤ Ψ

(
(ex̂ −1)1−µ(ex̌ −1)µ

)
< Ψ(e(1−µ)x̂+µx̌ −1)

for all µ ∈ (0, 1) where the last inequality follows since Ψ is strictly increasing
and (ex̂ − 1)1−µ(ex̌ − 1)µ < e(1−µ)x̂eµx̌ − 1 for all x̂, x̌ > 0 with x̂ �= x̌ and
µ ∈ (0, 1). Since this holds for any x̂, x̌ ∈ R++, we deduce that Uk is strictly
concave on R++.

As pointed out in Sect. 4.3.3, Φ(x) = log(1 + x), x ≥ 0, could be replaced
by any increasing and strictly concave rate-SIR function Φ(x), provided that
Ψ(Φ−1(x)), x > 0, is strictly concave (see also the remark in Sect. 4.3.3).

Remark 5.7. Sometimes it is desired to guarantee certain quality-of-service
(QoS) requirements, for instance, in terms of some maximum delay. In such
cases, it is convenient to take dom(Ψ) = [a, +∞) with a > 0 chosen such that
the QoS requirements are guaranteed, and define the value of Ψ outside of
its original domain to be −∞. See also the example in the following section.

It may be easily verified that the Ψ -conditions are satisfied by the traditional
utility functions defined in (5.4) for all α ≥ 1. Thus, potential choices of the
function Ψ are

Ψ(x) = Ψα(x) :=

{
x1−α

1−α α > 1
log x α = 1

x > 0 . (5.24)

Another interesting family of functions is
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Ψ(x) = Ψ̃α(x) =

{
log x

1+x α = 2
log x

1+x +
∑α−2

j=1
1

j(1+x)j α > 2
x > 0 . (5.25)

Fig. 5.2 depicts the utility function (5.21) for different choices of Ψ and com-
pares them to the traditional utility functions corresponding to proportional
fairness and total potential delay utility criteria (α = 2) defined in Sect.
5.1.1. We see that the “new” class of utility functions is obtained by com-

U
(x

)

0

0

− 1
ex−1

−1
x

log ex−1
ex

x

log(ex − 1) log(x)

Fig. 5.2. Assuming Φ−1(x) = ex − 1, x ∈ R, the figure compares the modified
utilities U(x) = Ψ(Φ−1(x)), x > 0, with the traditional ones U(x) = Ψ(x), x > 0,
for Ψ(x) = log(x), Ψ(x) − 1/x, x > 0, and Ψ(x) = log x/(1 + x), x > 0.

posing the traditional utilities with the function Φ−1(x) = ex − 1, x > 0. The
effect of this is a linearization of the logarithmic rate-SIR curve Φ(x). Indeed,
substituting (4.7) into Uk(νk(p)) with Uk defined by (5.21) yields

Uk(νk(p)) = wkΨ(SIRk(p)) = wkΨ
( pk

(Vp + z)k

)
(5.26)

so that the utility maximization problem in (5.20) becomes

p∗ = arg max
p∈P

∑
k∈K

wkΨ(SIRk(p)) = argmax
p∈P

∑
k∈K

wkΨ
( pk

(Vp + z)k

)
. (5.27)

So, in analogy to the wired case (see (5.4)), if Ψ(x) has the form given by
(5.24), p∗ in (5.27) can be regarded as being (w, α)-fair with respect to the
SIR. For example, according to this view, p∗ ∈ P with α = 1 and w = 1
is an SIR proportional fair power allocation since it maximizes the sum of
logarithmic SIR values. In this book, we adopt this interpretation and refer to
power allocations given by (5.27) as SIR fair or, more specifically, as (w, Ψ)-
fair power allocations.
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SIR proportional fair policies are close to throughput-optimal ones if
Φ(SIRk(p)) ≈ log(SIRk(p)) for each k ∈ K (high SIR regime), since then
Ψ(SIRk(p)) ≈ νk(p). On the other hand, if SIRk(p) � 1 for each k ∈ K,
then νk(p) = log(1 + SIRk(p)) ≈ SIRk(p). Hence, at low SIR values, the
modified utility functions are good approximations of the traditional ones,
that is, we have Ψ(SIRk(p)) ≈ Ψ(νk(p)). This can be seen in Fig. 5.2 where,
for values of x > 0 close to zero, the modified and traditional utility functions
almost coincide. Another interesting observation is the following.
Observation 5.8. Let w > 0 be arbitrary, and let Uk be given by (5.21) with
Ψ(x) = Ψα(x) where Ψα is defined by (5.24). Suppose that ν∗

α is a solution to
(5.18) with C = C̃. Then, ν∗

α converges to a max-min fair rate allocation as
α → ∞.

Proof. For α ≥ 2, we have U(x) = Ψα(Φ−1(x)) = −(−h(x)
)α−1

/(α − 1), x >
0, where h(x) = −1/(ex − 1), x > 0, is a continuously differentiable, increas-
ing, negative, and strictly concave function. So, since C in (5.18) (with C̃
replaced by C) is a compact set, the observation follows from [57, Lemma 3
and Corollary 2].

As explained in Sect. 5.2.2, p(ω) defined by (5.13) is a continuous bijective
map from the feasible rate region C onto P. Therefore, if ν∗

α ∈ C tends to a
max-min fair rate allocation as α → ∞, then p(ν∗

α) exists for every α ≥ 2
and goes to a max-min fair power allocation p̃ ∈ P. If V is an irreducible
matrix (Definition A.4.1), then

p̃ = argmax
p∈P

min
1≤k≤K

νk(p) = argmax
p∈P

min
1≤k≤K

Φ(SIRk(p)) .

The irreducibility of the matrix V ensures that all links are coupled, which
in turn admits the max-min representation above.

We complete this section by showing that the maximum in (5.27) exists.
Lemma 5.9. There exists some p∗ ∈ P such that

sup
p∈P

∑
k∈K

wkΨ(SIRk(p)) =
∑
k∈K

wkΨ(SIRk(p∗)) . (5.28)

Proof. A standard method for showing that a function f : RK → R has a
maximum value on a compact set is to argue that f is continuous on this set
(see Theorem B.8). The set P is closed and bounded so that, by Theorem
B.3, P is compact. So the only problem is that the objective function is
discontinuous on P due to the zero components in p ∈ P. However, this can
be easily fixed. To this end, let F (V,p) =

∑
k wkΨ( pk

(Vp+z)k
), and let p ∈ P

be arbitrary and fixed. Define P = {p ∈ P : F (V,p) ≤ F (V,p)} ⊆ P.
Clearly, P is a nonempty compact set. Moreover, F (V,p) is continuous on P
and

sup
p∈P

∑
k∈K

wkΨ(SIRk(p)) = sup
p∈P

∑
k∈K

wkΨ(SIRk(p)) .

Consequently, since P is compact, the supremum is attained.
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5.3 Interpretation in the QoS Domain

The function Ψ(x) introduced in the previous section can be interpreted as
a SIR-QoS mapping if Ψ(SIRk(p)) is a QoS value for link flow k. In this
case, Ψ can be either strictly increasing or strictly decreasing depending on
whether a larger value of Ψ(SIRk(p)) implies a better QoS for flow k (as
in the case of data rate) or smaller values of Ψ(SIRk(p)) are desired (as in
the case of delay). Widely considered QoS parameters are delay, bit error
rate and data rate but other quantities such as effective bandwidth [79] and
effective spreading gain [26] have been also considered in the literature. In
this section, we are going to formulate the power control problem in the QoS
domain. In fact, note that (5.18) can be viewed as an equivalent formulation
of the problem (5.20) in the QoS domain when the QoS parameter of interest
is data rate.

Let Q ⊆ R be an interval on the real line and suppose that U : R++ → Q is
a twice continuously differentiable and strictly monotone function. In contrast
to the preceding section, the function U(x) can be either strictly increasing
or strictly decreasing. The function value at x ∈ R++ can be interpreted as
the degree of satisfaction of a link flow to the service quality if the link rate
is equal to x > 0. Now suppose that ωk ∈ Q is a QoS parameter value of flow
k, and let ω = (ω1, . . . , ωK) ∈ QK be a QoS vector. This can be a vector of
delays, data rates or other QoS parameter values of interest.5

Definition 5.10. We say that a QoS vector ω is feasible if there exists a
power vector p ∈ P such that

ωk ≤ U(Φ(SIRk(p))) U strictly increasing
ωk ≥ U(Φ(SIRk(p))) U strictly decreasing .

(5.29)

Note that this definition implicitly implies a one-to-one relationship between
the QoS parameter value of interest and the signal-to-interference ratio at
the receiver output. Let us characterize the set of all feasible QoS parameter
values. To this end, define a function γ(x) with dom(γ) = Q as follows

γ(U(x)) = Φ−1(x), x ∈ R++ . (5.30)

So γ(x) is positive for all x ∈ Q, which is in fact equivalent to assuming that
each link rate is positive. Since Φ−1(x) is strictly increasing, it is clear that if
U is strictly increasing (decreasing), then γ is strictly increasing (decreasing)
as well. Now combining (5.29) with (5.30), and then proceeding essentially
as in Sect. 5.2.2 shows that ω ∈ QK is feasible if and only if

∀1≤k≤K γ(ωk) ≤ SIRk(p) ⇔ Γ(ω)z ≤ (I − Γ(ω)V)p

5 Notice that QoS parameter values are relative values and are not expressed in
any absolute units like, for instance, seconds (delay) or bits per second (data
rate).
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where Γ(ω) = diag(γ(ω1), . . . , γ(ωK)) represents the minimum signal-to-
interference ratios that are necessary to provide the QoS vector ω to the
flows. Reasoning further along these lines shows that ω is feasible if and only
if ω ∈ Fγ(P) where Fγ(P), referred to as the feasible QoS region, is given by

Fγ(P) = {ω ∈ QK : p(ω) ∈ P}
with p(ω) = (I− Γ(ω)V)−1Γ(ω)z .

(5.31)

By Theorem A.35, p(ω) ∈ RK
++ exists (and is unique) if and only if the

spectral radius of the matrix Γ(ω)V satisfies ρ(Γ(ω)V) < 1. Therefore,

Fγ = {ω ∈ QK : ρ(Γ(ω)V) < 1} (5.32)

can be interpreted as the feasible QoS region when there are no constraints on
transmit powers. Note that if we choose γ(x) = ex−1, x > 0, (or, equivalently,
U(x) = x), the closure of Fγ(P) is the feasible rate region defined by (5.14).

Remark 5.11. Considering Chapt. 2 and, in particular, Sect. 2.2 reveals that
Fγ(P) is closely related to the feasibility set F(Pt; P1, . . . , PK) defined by
(2.13). Indeed, if X(ω) = Γ(ω)V and z = 1, then

F(Pt; P1, . . . , PK) = Fγ(Pt ∩ Pi)

where Pt := {x ∈ RK
+ : ‖x‖1 ≤ Pt} and Pi := {x ∈ RK

+ : ∀k∈Kxk ≤ Pk}. In
special cases of no power constraints, total power constraint and individual
power constraints on each logical link, we have (respectively)

Fγ = F (F defined by (2.5))
Fγ(Pt) = F(Pt) (F(Pt) defined by (2.9))
Fγ(Pi) = F(P1, . . . , PK) (F(P1, . . . , PK) defined by (2.11))

(5.33)

where it is assumed that z = 1.

Now we are in a position to state the power control problem in the QoS
domain. First assume that a larger value of ωk implies a better QoS for link
k ∈ K. Then, the problem is to find a QoS vector ω∗ ∈ Fγ(P) such that

ω∗ = arg max
ω∈Fγ(P)

wT ω, w ∈ R
K
++ .

In contrast, if a smaller value of ωk implies a better QoS performance, then

ω∗ = argmin
ω∈Fγ(P)

wT ω .

Now it becomes obvious why convexity of the feasible QoS region is a highly
desired property. Indeed, if Fγ(P) is a convex set, the problem in the QoS
domain simply reduces to finding a vector ω∗ (if exists) at the boundary of
Fγ(P) where the hyperplane with the normal vector w supports the feasible
QoS region. The corresponding power vector is then p(ω∗) ∈ P.
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Remark 5.12. For convenience, in this book, “the boundary ∂Fγ(P) of Fγ(P)”
always refers to points ω ∈ QK such that p(ω) satisfies some power con-
straints with equality. Formally, we have

∂Fγ(P) =
{

ω ∈ QK : ρ(Γ(ω)V) < 1 and ∃n∈N

∑
k∈K(n)

pk(ω) = Pn

}
. (5.34)

According to this convention, Fγ(P) is strictly convex (see Definitions 2.15
and 2.15) if every boundary point of Fγ(P) cannot be written as a convex
combination of any two other points of Fγ(P).

Since P is a convex set, it follows from (5.31) that Fγ(P) is convex if pk(ω)
is convex for each k ∈ K. Hence, by Corollary 1.39 and Theorem 2.5 (see
also Corollary 2.8), we can conclude that both Fγ and Fγ(P) are convex sets
if γ(x) is log-convex on Q. This raises the question of whether γ(x) is log-
convex when the Ψ -conditions (Definition 5.5) are satisfied. To answer this
question, we combine the identity Ψ(Φ−1(x)) = U(x), x > 0, with (5.30) to
obtain

Ψ(γ(x)) ≡ x, x > 0 γ strictly increasing
ψ(γ(x)) ≡ x, x > 0 γ strictly decreasing

(5.35)

where ψ : R++ → Q is used to denote a negative version of Ψ , that is,

ψ(x) := −Ψ(x), x > 0 . (5.36)

By (5.35), if γ(x) is strictly increasing (decreasing), then Ψ(x) (ψ(x)) is its in-
verse function. Now Theorem B.28 in Appendix B.3.1 asserts that γ(x) is log-
convex if and only if Ψe(x) = Ψ(ex) is concave or if and only if ψe(x) = ψ(ex)
is convex depending on whether γ(x) is a strictly increasing or decreasing
function. Consequently, if the Ψ -conditions are satisfied, then γ(x) is log-
convex. This in turn implies that the corresponding feasible QoS region is a
convex set.

The functions Ψ(x) and ψ(x) relate a QoS parameter of interest and the
signal-to-interference ratio at the output of a linear receiver, and therefore
these functions can be referred to as SIR-QoS mappings. Note that because
of the strict monotonicity property, the increase of SIR always leads to a
better quality-of-service. Below we present two interesting examples of strict
monotone functions whose inverse functions are log-convex.

(i) Data rate in the high SIR regime: When SIRk(p) � 1, we have
log(1+SIRk(p)) ≈ log(SIRk(p)). Thus, at high SIR values, the relation-
ship between the data rate and the signal-to-interference ratio is well
approximated by Ψ(x) = log(x), x > 0. The inverse function γ(x) = ex

is log-convex on x ∈ R.
(ii) Average customer time for a M/M/1 queuing system in the low SIR

regime: If SIRk � 1, then the data rate is linear in SIR since then
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log(1+SIRk) ≈ SIRk. On the other hand, the average customer time is
1/(ν−λ) where ν and λ denote service rate and arrival rate, respectively
[1]. Thus, in the low SIR regime, the average customer time in a M/M/1
queuing system is the inverse function of SIR. Therefore, provided that
λ > 0 is not too large, our power control strategy with Ψ(x) = −ψ(x) =
−1/x, x > 0, is a good approximation for minimizing the total delay. Of
course, the inverse function of ψ(x) = 1/x, x > 0, is γ(x) = 1/x, x > 0,
which is a log-convex function implying that Fγ(P) is a convex set.
Note that the convexity property holds even if ψ(x) = 1/(x − λ) for
some λ > 0. This, however, requires that data rates greater than λ can
be guaranteed on every link. If (λ, . . . , λ) does not lie in the feasible
rate region C, the problem could be resolved by an appropriate link
scheduling, provided that (λ, . . . , λ) is in the convex hull of C.

5.4 Remarks on Joint Power Control and Link
Scheduling

The objective of this section is to discuss some potential consequences of the
results from Chapt. 2 on throughput-optimal MAC policies. Our definition of
the MAC layer includes two mechanisms for resource allocation and interfer-
ence management, namely link scheduling and power control. The operation
of dividing a frame into a number of shorter subframes and assigning links
to each subframe is referred to as link scheduling. The power control proto-
col determines transmit powers of the links in each subframe. The process
of jointly optimizing these two mechanisms is called joint power control and
link scheduling (JPCLS) (see Sect. 5.2.1). We say that a MAC policy does
not involve any link scheduling if each link is either active or idle during
the whole frame interval. In other words, there is no time sharing protocol
between different points in the feasible rate region that prevents some links
from being active concurrently.

5.4.1 Optimal Joint Power Control and Link Scheduling

We are interested in throughput-optimal strategies defined as follows.

Definition 5.13. Let w ≥ 0 be a given weight vector, and let p(Bn) ∈ P for
every n ∈ Λ. We say that (p∗, µ∗) is throughput-optimal if

(p∗, µ∗) = arg max
(p,µ)

∑
k∈K

wkνk(p, µ)

where νk(p, µ) is given by (5.10). The corresponding JPCLS is referred to as
throughput-optimal.
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As mentioned in Sect. 5.2.1, link rates under an optimal JPCLS correspond
to some point on the boundary of the convex hull of the feasible rate region
defined by (5.15). Thus, the problem of determining (p∗, µ∗) is related to
the computation of the points of the convex hull of C. In this section, our
main concern is the question of when (if at all) a concurrent transmission of
links should be preferred. This is of interest as sophisticated link scheduling
policies can be too prohibitive to be implemented in a distributed manner.

As already mentioned in Sect. 5.2.2, the question is directly linked to the
geometry of the feasible rate region C ⊂ RK

+ . Recall that C includes all data
rates being achievable by means of power control when link scheduling is not
implemented. Thus, since data rates under any JPCLS policy is a convex
combination of some points in C, pure geometrical reasoning shows that:

(i) If C is a convex set, all boundary points of the convex hull of C can
be achieved without resorting to link scheduling. More precisely, there
exists an optimal JPCLS policy with µ∗(B1) = µ∗(B) = 1 and some
power vector p∗ = p∗(B1) ∈ P.

(ii) If C is strictly convex (see the remark in the previous section and Defi-
nition 2.15), an optimal strategy does not involve any link scheduling.
Using the definitions of Sect. 5.2.1, this means that in the optimum, we
must have µ∗(B1) = 1.

Summarizing, we can say that the JPCLS problem becomes a pure power
control problem if C is a convex set. To illustrate this, consider a network
with mutually orthogonal links or, equivalently, with the channel state matrix
V = 0. It may be easily verified that in this case, the feasible rate region C is
a convex set (Example 2.3). Figure 5.3 depicts the feasible rate region for two
mutually orthogonal links subject to a sum power constraint (p1 + p2 ≤ Pt).
Note that if V = 0 and

∑
k pk ≤ Pt, C is a strictly convex set since Φ(x) =

log(1 + x) is strictly concave on R+. In case of K ≥ 2 mutually orthogonal
links, every point ν∗ on the boundary of C (see the remark on the boundary
of Fγ(P) in the previous section) is given by ν∗

k = wkΦ(p∗k/zk), k ∈ K, where
w ∈ RK

++ is a fixed weight vector and

p∗ = arg max
p∈R

K
+

‖p‖1=Pt

K∑
k=1

wkΦ
(pk

zk

)
= argmax

p∈R
K
+

‖p‖1=Pt

K∑
k=1

wk log
(
1 +

pk

zk

)
.

This is a weighted version of the standard water-filling problem [11] for which
a closed form solution can be easily found and is given by

p∗k = max
{

0,
wk

λ
− zk

}
, zk > 0

where the dual variable λ is chosen to satisfy
∑K

k=1 max{0, wk

λ − zk} = Pt.
In a special case, when p∗k > 0 for each k ∈ K (no link is idle), one obtains
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Feasible Rate Region

ν2

ν1

B

A
w

ν∗

Fig. 5.3. The feasible rate region for two mutually orthogonal links subject to a
sum power constraint. The region is a strictly convex set so that link scheduling
between arbitrary points on the boundary of the feasible rate region is suboptimal.

p∗k = wk
Pt +

∑K
l=1 zl∑K

l=1 wl

− zk > 0 .

From this equation, we see that every optimal positive power vector is as-
sociated with a unique weight vector w normalized to be ‖w‖1 = 1. Thus,
except for the points on the boundary where at least one of the links is idle
(νk(p) = 0 for some k ∈ K), every rate vector ν∗ is associated with a unique
(up to a scaling factor) positive weight vector w which is normal to the
hyperplane supporting the feasible rate region at ν∗.

Due to the strict convexity property of C in the example above, the points
on the boundary of C cannot be achieved when link scheduling is involved.
Indeed, if there are at least two subframes B1 and B2 with µ(B1) > 0 and
µ(B2) > 0, and associated power vectors p(B1) �= p(B2), then the resulting
data rate µ(B1)ν(B1) + µ(B2)ν(B2) with µ(B1) + µ(B2) = 1 is interior to
C where νk(Bn) = Φ(SIRk(p(Bn))), k ∈ K. If C is convex (but not strictly
convex), an optimal MAC policy may involve link scheduling. To see this,
consider two links with p1 + p2 ≤ Pt and

ν1(p) = log
(
1 +

p1

p2� + 1

)
ν2(p) = log

(
1 +

p2

p1� + 1

)
for some � > 0. In this case, the feasible rate region is equal to the closure
of the feasibility set in Example 2.4. It follows that if � = (

√
1 + Pt − 1)/Pt,

the feasible rate region C is convex but not strictly convex. Now suppose
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that w1 = w2 = 1, in which case the objective is to maximize ν1(p) + ν2(p)
subject to p1 + p2 ≤ Pt. Due to the symmetry of the objective function, it
may be easily seen that the optimal power allocation is p1 = p2 = Pt/2 and
the corresponding data rates are

ν1(p) = ν2(p) = log
(
1 +

Pt√
1 + Pt + 1

)
= log

(
1 +

Pt(
√

1 + Pt − 1)
Pt

)
= log

√
1 + Pt =

1
2

log(1 + Pt) .

These rates can also be achieved if the links take turns transmitting at powers
equal to Pt, such that the one link is active during the first half of the frame
interval and the second link during the other half. Formally, this means that
µ(B1) = µ(B2) = 1/2 and p(B1) = (Pt, 0),p(B2) = (0, Pt).

5.4.2 High SIR Regime

We say that link k operates in the high SIR regime if

νk(p) = Φ(SIRk(p)) = log(1 + SIRk(p)) ≈ log(SIRk(p)) .

Thus, in the high SIR regime, the data rate behaves like a logarithmic function
of SIR. As a result, a linear increase of SIR results only in a logarithmic
increase of data rate. In this section, we discuss how this impacts optimal
MAC strategies.

To this end, define the feasible rate region with a common rate require-
ment α ≥ 0 as follows

C(α) = {ω ∈ R
K
+ : α ≤ ω ≤ ν(p),p ∈ P} .

Clearly, C(α) ⊆ C for all α ≥ 0 with C(0) = C and C(α) = ∅ for some
sufficiently large α. Now suppose that α > 0 is chosen such that both6

(i) C(α) �= ∅, and
(ii) for every ν ∈ C(α), there holds νk ≤ νk(p) ≈ log(SIRk(p)) for each

k ∈ K and some p ∈ P.

Under this assumption, C(α) is well approximated by the feasible QoS region
Fγ(P) defined by (5.31) with γ(x) = ex, x ∈ [α,∞). Now since the exponential
function is log-convex, Corollary 2.8 implies that Fγ(P) is a convex set. This in
turn implies that C(α) is a convex set under the assumption of the logarithmic
relationship between data rate and SIR. Moreover, if V is irreducible, which
is usually the case in practice, Corollary 2.16 ensures that Fγ(P) is a strictly
convex set. Thus, by the discussion above, we can conclude that in the high

6 Note that if there is no such α, then the network cannot operate in the high SIR
regime.
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SIR regime, no link scheduling should be involved. This is quite intuitive
since a logarithmic increase in data rate due to a higher value of SIR cannot
compensate a linear decrease due to a shorter transmission time (by virtue
of partitioning a frame into subframes).

5.4.3 Low SIR Regime

Now let us assume that a network operates in the low SIR regime. In this
case, the relationship between data rate and SIR can be well approximated
by a linear function:

νk(p) = Φ(SIRk(p)) = log(1 + SIRk(p)) ≈ SIRk(p) .

Thus, when compared with the high SIR regime, we have an entirely different
situation here since a linear increase of SIR entails a linear increase in data
rate. This has a tremendous impact on the design of optimal MAC policies.
The main driving force behind the operation in the low SIR regime is the
ability to transmit at an energy per information bit close to the minimum
[80, 81]. For instance, in wireless sensor networks, the energy consumption
(rather than the spectral efficiency) is one of the major design criteria.

Comparing (5.14) with (5.31) reveals that the feasible rate region in the
low SIR regime is equal to the closure of the feasible QoS region Fγ(P) with
γ(x) = x, x > 0. In all that follows, let us assume that7 γ(x) = x, x > 0. We
refer to cl(Fγ(P)) as the feasible SIR region, while its complement Fc

γ(P) =
RK

+ \ cl(Fγ(P)) is called the infeasible SIR region. Since the linear function
is not log-convex, the results of Sect. 2.3 cannot be applied to the low SIR
regime. Furthermore, it follows from Sect. 2.4 that the feasible SIR region is
not a convex set. However, for K = 2, the convex hull of the feasible SIR
region is a convex polygon, regardless of whether the links are subject to
individual power constraints or are constrained on total power. This is easy
to see from (2.16) and the following discussion in Sect. 2.4, which shows that
p1(ω) and p2(ω) are both concave on Fγ = F. Thus, in the case of two links
subject to a total power Pt, the convex hull of cl(Fγ(P)) is a triangle with the
vertices given by (0, 0), (Pt/z1, 0) and (0, Pt/z2). The nonzero vertices are the
points E and F in Fig. 5.4. Clearly, if V �= 0, a throughput-optimal MAC
policy is then a simple link scheduling (or time sharing) protocol between
the vertices (Pt/z1, 0) and (0, Pt/z2), which correspond to the power vectors
p = (Pt, 0) and p = (0, Pt), respectively. In other words, the links take
turns transmitting at powers equal to Pt, such that only one link is active
at any time. Using the definitions of Sect. 5.2.1, this means that each frame
B is divided into (at most) two subframes B1 and B2 such that µ(B1) +

7 The only reason for excluding zero from the definition of γ(x) is the compatibility
with the previous definitions. Because of this, we have to take the closure of Fγ(P)
to obtain the feasible rate region.
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µ(B2) = µ(B) = 1, with the corresponding power vectors being equal to
p(B1) ∈ {(Pt, 0), (0, Pt)} and p(B2) = (Pt, Pt) − p(B1). The set function
µ : A → [0, 1] with A = {B1, B2} indicates at which relative frequencies
each of the power vectors is utilized in an optimal MAC policy. This then
determines a family of optimal MAC policies parameterized by the function
µ.

The situation is slightly more complicated in the case of two links subject
to individual power constraints P1 > 0 and P2 > 0. In this case, the convex
hull of the feasible SIR region can be either a triangle spanned by the points
(0, 0), (P1/z1, 0) and (0, P2/z2) or a convex quadrilateral whose vertices are
(0, 0), (P1/z1, 0), (0, P2/z2) and (ω∗

1 , ω∗
2) satisfying p1(ω∗) = p2(ω∗). Clearly,

if the convex hull is the triangle ((ω∗
1 , ω∗

2) is then a member of this triangle)
and V �= 0, then an optimal MAC policy is similar to that for a total power
constraint except that now it involves a time sharing protocol between the
points (P1/z1, 0) and (0, P2/z2) (D and A in Fig. 5.4), with the corresponding
power vectors being (P1, 0) and (0, P2). This again implies two subframes B1

and B2 in each frame such that µ(B1) + µ(B2) = 1, with the power vectors
being given by p(B1) ∈ {(P1, 0), (0, P2)} and p(B2) = (P1, P2) − p(B1).
When the convex hull is a convex quadrilateral, a time sharing protocol either
between (P1/z1, 0) and (ω∗

1 , ω∗
2) (D and G in Fig. 5.4) or between (0, P2/z2)

and (ω∗
1 , ω∗

2) (A and G) is optimal. Again, each frame is divided into two
subframes B1 and B2 such that µ(B1) + µ(B2) = 1. However, the power
vectors can be either

p(B1) ∈ {(P1, 0), (p1(ω∗), p2(ω∗))}
p(B2) = {(P1, 0), (p1(ω∗), p2(ω∗))} \ {p(B1)}

or

p(B1) ∈ {(0, P2), (p1(ω∗), p2(ω∗))}
p(B2) = {(0, P2), (p1(ω∗), p2(ω∗))} \ {p(B1)} .

In the point (ω∗
1 , ω∗

2), both links are active and transmit at powers specified
by the power vector p(ω∗). Again, the set function µ determines at which
relative frequencies the power vectors are utilized in an optimal strategy.

Now the question is whether it is possible to generalize these observations
to a network with K links and transmit powers subject to some constraints?
More precisely, we are interested in the following problem.

Problem 5.14. Is the convex hull of the feasible SIR region a convex poly-
tope in RK

+ , regardless of the type of power constraints?

If this was true, then a MAC policy based on a time sharing protocol between
the polytope vertices similar to that for the two dimensional case would be
optimal. However, this cannot be true in full generality. To see this, consider
the feasible SIR region given by cl

(
Fγ(Pt)∩(Fγ(Pi)

)
where Fγ(Pt) and Fγ(Pi)
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are defined by (5.33) for z = 1. In words, while cl(Fγ(Pt)) is the feasible
SIR region in a network constrained on total power, cl(Fγ(Pi)) denotes the
feasible SIR region under individual power constraints on each logical link.
The situation is illustrated in Fig. 5.4 for K = 2. In this two dimensional

A

0 F

p1(ω) = P1

p2(ω) = P2

‖p(ω)‖1 = Pt

B
G

C

feasible SIR region

Dω1

ω2

E

Fig. 5.4. The feasible SIR region for two users under total power constraint Pt

and individual power constraints on each link P1 < Pt and P2 < Pt. If there were
no individual power constraints, a MAC policy involving a time sharing protocol
between the points E and F , corresponding to power vectors (0, Pt) and (Pt, 0),
respectively, would be optimal. In contrast, when in addition individual power con-
straints are imposed, a time sharing protocol between A and D (that correspond
to power vectors (0, P2) and (P1, 0), respectively) is suboptimal. In this case, it is
better to schedule either between A and B or between B and C or between C and
D depending on the target signal-to-interference ratios.

example, the convex hull of the feasible SIR region is a convex pentagon
generated by the points (0, 0), A, B, C and D. So, in this case, a time sharing
protocol between some of the pentagon vertices A, B, C and D is optimal.
While in A and D only one of the links is active, both links are active in B and
C. However, Theorem 2.17 asserts that Fc

γ(Pt) is not a convex set in general.
Therefore, the convex hull of Fγ(Pt) ∩ Fγ(Pi) does not need to be a convex
polytope, which may require alternative MAC policies to achieve points on
the boundary of the convex hull. For instance, if Fγ(Pt) was not convex in the
two-user case, a time sharing protocol between the points B and C (Fig. 5.4)
would not be necessarily the best strategy since the boundary of Fγ(Pt) may
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intersect the straight line connecting B and C, and hence requiring another
policy to achieve the boundary points.

It is interesting to point out that in a network constrained only on total
power, the convex hull of the feasible SIR region cl(Fγ(Pt)) is a convex poly-
tope despite the fact that Fc

γ(Pt) is not a convex set in general. Indeed, we
have

F̃γ(Pt) = ConvexHull
(
Fγ(Pt)

)
(5.37)

where
F̃γ(Pt) = {ω ∈ R

K
++ : ωT z ≤ Pt} .

Clearly, cl(F̃γ(Pt)) is a convex polytope whose vertices are (0, . . . , 0) and
Pt/zk ek with k = 1, . . . , K. Every point in F̃γ(Pt) can be achieved using a
TDMA-like protocol that alternates between different links transmitting at
power Pt, such that only one link is active in every subframe. More formally,
given B and A, any JPCLS policy (p∗, µ∗) with

∑
k µ(Bk) = 1 and p(Bk) =

Ptek, 1 ≤ k ≤ K, is optimal. To see (5.37), note that, for all ω ≥ 0 (ω �= 0)
with ρ(Γ(ω)V) < 1, (I − Γ(ω)V)−1 − I ≥ 0 with equality (in all entries) if
and only if V = 0. From this, it follows that ωT z < ‖p(ω)‖1 for any ω ∈ Fγ

and V �= 0, and therefore Fγ(Pt) ⊂ Fγ is a proper subset of F̃γ(Pt) for any
matrix V �= 0. Moreover, since any point in F̃γ(Pt) is a convex combination
of some points in Fγ(Pt), we obtain (5.37).

5.4.4 Wireless Links with Self-Interference

Up to now, we have assumed that wireless links are only exposed to interfer-
ence from other links, and therefore no link interferes with itself whenever it
is active. The assumption is reasonable when multiple-access interference is
a dominant factor.

Nevertheless, self-interference is usually present in wireless networks,
mainly due to the time-dispersive nature of the radio propagation channel,
but also due to the nonlinear characteristics of deployed components. What-
ever the reason is, it is reasonable to assume that the self-interference is pro-
portional to transmit power. In case of a multipath propagation channel, the
received signal may be composed of a strong signal path and some (usually
weaker) delayed paths. When the time dispersion of the channel is sufficiently
large and only the strong path is used to decode transmitted symbols, other
paths may cause relatively strong intersymbol interference. It is important to
emphasize that it is not the absolute value of self-interference that matters
but rather its relation to multiple access interference. Indeed, link schedul-
ing can entail a noteworthy performance improvement only if multiple access
interference is dominant. On the contrary, if self-interference is a dominant
factor on each link, concurrent transmission may be preferable.

But when exactly is self-interference dominant? Although it is difficult to
give a definite answer to this question in a general context, Theorem 1.48 in
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Sect. 1.4.2 suggests some useful guidelines for the design of MAC strategies
in the presence of relatively strong self-interference. This theorem asserts
that the Perron root is convex if both the channel state matrix V ∈ R

K×K
+

is symmetric positive semidefinite and γ : Q → R+ defined by (5.30) is a
convex function. This in turn implies (Corollary 1.49) that the feasible QoS
region Fγ defined by (5.32) is a convex set if both V is symmetric positive
semidefinite and γ is convex. Consequently, under the assumption of positive
semidefiniteness of V, convexity of γ : Q → R+ is sufficient for Fγ to be a
convex set, which is a significantly weaker requirement than log-convexity.
In particular, γ(x) = ex − 1, x ≥ 0 is a convex function implying that the
feasible rate region is a convex set when the channel state matrix is symmetric
positive semidefinite.

If there is no self-interference or, equivalently, if trace(V) = 0, the channel
state matrix V cannot be positive semidefinite, which immediately follows
from the non-negativeness of V. Roughly speaking, for the matrix V to be
positive semidefinite, self-interference must be dominant on each link. How-
ever, the results mentioned above can be applied only if V is symmetric (or
approximately symmetric). In these cases, all points on the boundary of the
convex hull of the feasible rate region C can be achieved by power control with
all links being active concurrently. Hence, throughput-optimal MAC policies
do not need to involve link scheduling.

For the case that V is not symmetric but its diagonal elements are dom-
inant in the sense that

Vs = (V + VT )/2

is positive semidefinite, numerical experiments suggest that similar conclu-
sions may be possible. However, we have no proof for that to be true in
general. If the symmetric part Vs of V is positive definite, then it is known
that ρ(V) ≤ ρ(Vs) for any nonnegative matrix V [7].

Note that each quadratic matrix can be uniquely written as the sum of a
symmetric matrix and a skew-symmetric one. If we view RK×K as a Hilbert
space with the inner product given by 〈A,B〉 = trace(AT B), then the sets of
symmetric matrices and skew-symmetric ones are orthogonal complementary
subspaces in RK×K . Moreover, Vs is the orthogonal projection of V onto the
space of K × K symmetric matrices. Thus, in this sense, Vs is the closest
symmetric matrix to V. This suggests that Fγ is a “nearly convex set” when
both Vs is positive semidefinite (self-interference dominant) and the distance
between V and Vs is not too large. In these cases, no link scheduling should
be preferred when maximizing total throughput.

5.5 Remarks on the Efficiency–Fairness Trade Off

In Sect. 5.1.1, we briefly described the fundamental efficiency–fairness trade
off in wired communications networks. It was pointed out that throughput-
optimal policies may lead to significant rate deviations among competing
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flows. It is even possible that some flows are denied access to the links. For
instance, the example in Fig. 5.1 shows a simple scenario where the longer
flow is allocated zero source rate under a throughput-optimal rate allocation.
Because this is in general not tolerable, the network designers are forced to
address the issue of fairness. The most common understanding of fairness
is the max-min fairness, in which case all source rates are made as equal
as possible. However, it is quite intuitive that, for instance, an allocation
of equal source rates to all flows is suboptimal in terms of throughput or
some other (suitably chosen) aggregate utility function. Since the value of
the utility function can be identified as some measure of overall efficiency
of the network, the outlined trade off situation is often referred to as the
efficiency–fairness trade off. It is important to notice that the discussion below
aims at highlighting the potential of incompatibility between efficiency and
fairness issues. In fact, in the case of wired networks, this trade off depends on
the network topology. Simple examples show that there exist wired network
topologies where an “ideal” combination of fairness and efficiency is possible
[58].

The wired network topology together with the fixed link capacities is,
in the case of wireless networks, replaced by some constraints on transmit
powers and the channel state matrix V ≥ 0, which describes the crosstalk
between different links. As described in Sect. 5.2.4, in wireless networks, the
utility maximization problem becomes a power control problem of the form

p∗ = arg max
p∈P

∑
k∈K

wkΨ(SIRk(p)) (5.38)

for some given weight w > 0, where the function Ψ : R++ → Q ⊆ R is
assumed to satisfy the Ψ -conditions (Definition 5.5) and p∗ is referred to as
a (w, Ψ)-fair power allocation (see Sect. 5.2.5). Under such an allocation of
transmit powers, the data rate for link k is νk(p∗) = Φ(SIRk(p∗)) and, of
course, the data rates are in general different for different links. This raises
the following interesting question: Under which conditions (if at all) is a
(w, Ψ)-fair power allocation p∗ a max-min fair power allocation p defined to
be

p = argmax
p∈P

min
1≤k≤K

SIRk(p) . (5.39)

In other words, we are asking whether there exists a power vector p that
is both (w, Ψ)-fair and max-min fair in the sense of (5.39). In the following
section, we use the results of Sects. 1.2.3 and 1.2.4 to answer this question.
In doing so, we assume that

(i) z = 0, from which it follows that SIRk(p) = SIRk(αp), α > 0. This
assumption is justified when the noise is negligible in comparison with
multiple access interference.

(ii) V ≥ 0 is irreducible, that is, V ∈ XK . Furthermore, V is chosen such
that the maximum in (5.38) with z = 0 exists. As discussed in Sect.



5.5 Remarks on the Efficiency–Fairness Trade Off 125

1.2.3, if z = 0 and Ψ(x) = log(x), x > 0, irreducibility of V ≥ 0 is not
sufficient for the maximum in (5.38) to exist. At the end of the section,
we make some remarks on general nonnegative matrices.

Remark 5.15. Irreducibility of V can be explained by means of the directed
graph G(V) associated with V. Indeed, it is well known (see Appendix A.4.1)
that V is irreducible if and only if G(V) is strongly connected. In terms of in-
terference, we can interpret strong connectivity of G(V) as a kind of interfer-
ence coupling spanning the entire network. Therefore, when V is irreducible,
a network is said to be entirely coupled.

As an immediate consequence of these assumptions, we have

max
p∈P

min
1≤k≤K

SIRk(p) = max
p∈RK

++

min
1≤k≤K

SIRk(p) .

Since V ≥ 0 is irreducible, the existence of the maximum on RK
++ immediately

follows from the Collatz–Wielandt formula (Theorem A.27). Furthermore, it
follows from this theorem that the maximum is attained if and only if p
is a positive right eigenvector of V. Thus, any positive right eigenvector of
V ∈ XK is a max-min fair power allocation. Finally, we must have

SIR1(p) = . . . = SIRK(p) = 1/ρ(V) (5.40)

which immediately follows from the fact that p > 0 is a right eigenvector of
V associated with ρ(V). Obviously, (5.40) implies that ν1(p) = . . . = νK(p).
In what follows, p is used to denote both a positive right eigenvector of V
associated with ρ(V) and a max-min fair power allocation given by (5.39).

5.5.1 Efficiency of the Max-Min Fair Power Allocation

Due to the above assumptions, the optimization domain P ⊂ RK
+ in (5.38)

and (5.39) can be replaced by RK
++. Moreover, to conform with the results

presented in Sects. 1.2.3 and 1.2.4, we rewrite the utility-based power control
problem as an equivalent minimization problem:

p∗ = argmin
p∈RK

++

∑
k∈K

wkψ
(
SIRk(p)

)
= argmin

p∈RK
++

∑
k∈K

wkF

(
1

SIRk(p)

)
= argmin

p∈RK
++

G(p,w)
(5.41)

where F (x) = ψ(1/x) = −Ψ(1/x) and G : RK
++ × RK

++ → R is defined to be

G(p,w) :=
∑
k∈K

wkF

(
1

SIRk(p)

)
=
∑
k∈K

wkF

(
(Vp)k

pk

)
.
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Now since Ψ -conditions are satisfied and the minimum exists (by assumption),
it is clear by Sect. 6.2 that F belongs to the function class G(V) (Definition
1.22). Indeed, based on the results of Sect. 6.2, it may be seen that the
problem can be converted into an equivalent convex optimization problem.
This in turn implies that every local minimum is a global one.

Since V ∈ XK , the problem falls into the theoretical framework presented
in Sects. 1.2.3 and 1.2.4. So let us apply these results to our problem. To this
end, suppose that q ∈ RK

+ is a left eigenvector of V associated with ρ(V).
Recall that since V is irreducible, ρ(V) is an eigenvalue of V and q,p > 0
(Theorem A.25). For the purposes in this section, the most important results
are provided by Theorems 1.24 and 1.31. By the first theorem, we know that
if w = q ◦ p > 0, then8

G(p,w) =
∑
k∈K

wkF

(
(Vp)k

pk

)
≥ F
(
ρ(V)
)‖w‖1

for all p ∈ R
K
++. Equality holds for p = p ∈ R

K
++ if and only if w = q ◦ p.9

This means that if w > 0 happens to be equal to the Hadamard product of q
and p, then the objective function in (5.41) attains its minimum if the power
vector is equal to a positive right eigenvector of V. Thus, at the minimum in
(5.41), we have

SIR1(p∗) = · · · = SIRK(p∗) = 1/ρ(V) .

Consequently, if w = q ◦ p, then p∗ = p, that is, p∗ is both (w, Ψ)-fair and
max-min fair power allocation. By Theorem 1.31, (q ◦ p,p) is a saddle point
of G(p,w). Moreover, both q ◦p and p are unique up to constant multiples.
This gives rise to the following theorem.

Theorem 5.16. Let V ∈ XK and F ∈ G(V) be given. Then, a (w, Ψ)-fair
power allocation is max-min fair if and only if w = q◦p > 0, which is unique
up to a constant multiple.

The theorem asserts that, in the case of entirely coupled networks (V ∈ XK),
(w, Ψ)-fair power allocations and max-min fair power allocations coincide if
and only if w = q ◦p > 0. The corresponding power vectors are positive and
unique up to constant multiples.

The result can be extended to more general nonnegative matrices by con-
sidering the results in Sects. 1.6.2 and 1.6.3. However, it is emphasized that
some restrictions on V �= 0 are necessary. The reason is that if V ≥ 0 is
reducible (Theorem A.21), a max-min fair power allocation in the sense of
(5.39) with (5.40) does not need to exist. Indeed, by Theorem A.30, we know
that a reducible matrix V ≥ 0 may have no positive right eigenvectors asso-
ciated with ρ(V) ≥ 0. Moreover, as explained in Sect. 1.6.3, we may have
8 If w ∈ Π+

K , then the lower bound is equal to that in (1.32).
9 Note that in the first part of the book, p > 0 is a right eigenvector of X ∈ XK .
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sup
p∈RK

++

min
1≤k≤K

1
SIRk(p)

< ρ(V) .

So, the question is under which conditions the above supremum is attained
and the left-hand side is equal to the spectral radius of V. This is equivalent
to asking under which conditions a positive right eigenvector of V associated
with ρ(V) > 0 can be constructed, which is actually necessary and sufficient
for a max-min fair power allocation in the sense of (5.39) with (5.40) to exist.
In fact, in Sect. 1.6.2, we completely characterized the set of such matrices. By
these results, we know that a max-min fair power allocation exists if and only
if V ∈ BK . Note that the set BK is larger than XK . In particular, if V ∈ BK ,
there may be an entirely coupled subnetwork with links being orthogonal to
all other links outside the subnetwork. Such a subnetwork is called isolated.
Now the condition V ∈ BK means that each isolated subnetwork is maxi-
mal (see Sect. 1.6.2 and Definition A.31) and all other (nonisolated) entirely
coupled subnetworks are not maximal.

Now let us consider the existence of a (w, Ψ)-fair power allocation given
by (5.41). First of all, if V ≥ 0 is reducible, then the function G : R

K
++ ×

RK
++ → R in (5.41) may not be well defined. As discussed in Sect. 1.6.2,

for the function to be well defined, it is necessary to assume that V ∈ N+
K .

Furthermore, we have F ∈ G(V) where G(V) is specified by Definition 1.22
except that now G(p,w) does not need to have a minimum on RK

++ for every
w > 0 but only a finite infimum. Under these assumptions, Theorem 1.60
implies that if w = q ◦ p ≥ 0, then, for any V ∈ N+

K ,

inf
p∈RK

++

G(p,w) = inf
p∈RK

++

∑
k∈K

wkF

(
(Vp)k

pk

)
= F
(
ρ(V)
)‖w‖1 .

Moreover, according to the discussion above, the infimum is attained for
p = p > 0 if V ∈ BK . However, note that even if V ∈ BK , it might be
impossible to construct a positive weight vector w such that w = q ◦ p.
This is simply because the existence of a positive left eigenvector of V ∈ BK

associated with ρ(V) is not guaranteed.
From a practical point of view, allocating positive transmit powers to

links with zero weights is a waste of resources, and therefore does not make
sense. For this reason, we are interested in the characterization of channel
state matrices V ∈ N+

K for which positive left and right eigenvectors can
be constructed. Such a characterization is provided by Theorem A.34 (see
also Sect. 1.6.2). This theorem asserts that V has positive left and right
eigenvectors associated with ρ(V) if and only if V ∈ BK , that is, if and
only if both V is block-irreducible in accordance with Definition A.33 and
each diagonal block in the normal form (A.20) is maximal. Note that if V is
block-irreducible, the network consists of entirely coupled subnetworks each
of which is isolated. As a consequence, Theorem 5.16 essentially extends to
the set BK except that p > 0 and w = q◦p > 0 are not unique up to constant
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multiples. In fact, (q,p) can be any member of E+
K(V), the eigenmanifold of

V ∈ BK defined in Sect. A.4.3. Finally, considering Theorem 1.62 shows that
if V ∈ BK , then (p,q◦p) is a saddle point of G(p,w) for any (q,p) ∈ E+

K(V).

5.5.2 Axiom-Based Interference Model

In this section, we point out the work of [82] (see also other references therein)
where the authors go one step further in assuming that interference not only
depends on the power allocation, but also on some adaptive receive strategies,
like interference filtering or channel assignment. The additional optimization
of the receive strategy adds new degrees of freedom to the problem of resource
allocation. Thus, new concepts and algorithms are required.

More precisely, if z = 0, 10 then the SIR is of the form SIRk(p) = pk/Ik(p)
where Ik : RK

+ → R+ is an interference function characterized by the following
axioms.

A1 Ik(p) ≥ 0 (non-negativity).
A2 Ik(µp) = µIk(p) for all µ ≥ 0 (scalability).
A3 Ik(p(1)) ≥ Ik(p(2)) if p(1) ≥ p(2) (monotonicity).

Obviously, the interference function Ik(p) = (Vp)k =
∑

l vk,lpl considered
in this book satisfies the axioms. This linear mapping is however only one
possible choice of an interference function. Indeed, Ik may be nonlinear and
can also model the impact of adaptive receiver designs, such as minimum
mean square error (MMSE) filtering or interference cancellation, as well as
other system aspects. Common examples are:

• Ik(p) = minzk∈Zk

∑
l vk,l(zk)pl, where the adjustable receive strategy zk

(taken from some compact set of possible strategies Zk) has impact on the
effective interference on link k. This specific model holds, for instance, for
linear multi-antenna MMSE filtering or MMSE detection in code division
multiple access systems.

• Ik(p) = maxc fk(p, c), where fk(p, c) is the interference for a given power
allocation p under some interference uncertainty c. This definition can be
used to model worst-case interference under imperfect channel knowledge.

10 The case of positive noise powers can be incorporated by considering an extended
power vector [82].
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Power Control Algorithm

This chapter presents algorithmic solutions to the power control problem
as stated in the previous chapter. We focus on recursive gradient-based al-
gorithms with a constant step size [83, 11]. Although much more powerful
algorithms can be devised to solve the problem, we are going to confine our
attention to such methods because of their simplicity. In particular, there is
no need for step size control, which is difficult to realize in practice.

The significance of simple iterative algorithms that allow an efficient dis-
tributed implementation cannot be emphasized enough in the case of wire-
less networks where the judicious assessment of the complexity–performance
trade off is particularly important. Given the limited and costly nature of
wireless resources, minimizing the control message overhead for each itera-
tion step must be a high priority. In case of gradient-based algorithms, one of
the major challenges is the computation of the gradient vector of the aggre-
gate utility function in a distributed manner. In general, due to the mutual
dependence of logical links, this computation involves coordination and ex-
change of global information between all network nodes. Therefore, the use of
classical flooding protocols to exchange this information results in a relatively
high cost in terms of wireless resources.

In this book, we present a scheme based on the use of an adjoint network
to efficiently distribute some locally measurable quantities to all other logical
transmitters. A network is said to be adjoint to a given (primal) network
with the channel state matrix V if it has the same network topology and
its channel state matrix is VT . We call the procedure cooperative flooding as
nodes cooperate by transmitting its local information to other nodes. More
precisely, instead of each node sending its message separately as in the case
of classical flooding protocols, nodes cooperate by transmitting simultane-
ously over the adjoint network in such a way that each node can estimate its
gradient component based on some local measurements. The disadvantage of
this scheme is that some coarse synchronization is necessary.

S. Stańczak et al.: Resource Allocation in Wireless Networks, LNCS 4000, pp. 129–152, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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6.1 Some Basic Definitions

Throughout this chapter, the utility function is assumed to have the form
given by (5.21) where Ψ : R++ → Q satisfies the Ψ -conditions defined right
below (5.21). For this class of utility functions, we prove global convergence
of the algorithm. The rate of convergence is shown to be geometric (or lin-
ear) under some mild conditions on the channel state matrix V. In order to
conform to the classical formulation as a minimization problem, we define
ψ : R++ → Q to be1

ψ(x) := −Ψ(x), x ∈ R++ . (6.1)

Thus, using
F (p) :=

∑
k∈K

wkψ(SIRk(p)), ∀k∈K wk > 0 (6.2)

with the signal-to-interference ratio (SIR) defined by (4.2), the power control
problem in (5.20) can be rewritten in an equivalent form as

p∗ = arg min
p∈P

F (p) . (6.3)

Note that due to Lemma 5.9 and ψ(x) = −Ψ(x), the minimum exists.
Throughout this chapter, it is assumed that

trace(V) = 0 (6.4)

which implies that there is no self-interference on each link (see also Sect. 5.4).
However, we point out that this requirement does not impact the generality
of the analysis and could be easily dropped. It is convenient to define the
interference function I(p) > 0 as

Ik(p) := (Vp + z)k =
∑
l∈K

vk,lpl + zk =
∑
l∈K
l �=k

vk,lpl + zk, k ∈ K (6.5)

where the last equality follows from (6.4). Hence,

SIRk(p) =
pk

Ik(p)
. (6.6)

For completeness, the definition below summarizes key properties of the func-
tion ψ, which are an immediate consequence of (6.1) and the Ψ -conditions
(Definition 5.5).

1 The reader is also referred to Sect. 5.3 for definitions and other interpretations
of the functions Ψ(x) and ψ(x) = −Ψ(x)
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Definition 6.1 (ψ-Conditions).

(i) ψ : R++ → Q is a twice continuously differentiable and strictly decreas-
ing function.

(ii) We have

lim
x→0

ψ(x) := +∞ ⇒ lim
x→0

ψ′(x) = lim
x→0

dψ

dx
(x) = −∞ . (6.7)

This requirement guarantees that p∗ given by (6.3) is positive.
(iii) ψe(x) := ψ(ex) is convex on R. Since ψ is twice continuously differen-

tiable and ex > 0 is strictly monotone on R, Theorem B.18 implies that
this is equivalent to

ψ′′
e (x) =

d2ψe

dx2
(x) ≥ 0, x ∈ R . (6.8)

It is worth pointing out that the last condition implies that ψ is strictly
convex. To see this, let x̂, x̌ ∈ R with x̂ �= x̌ be arbitrary, and let x(µ) =
(1 − µ)x̂ + µx̌ be their convex combination. By convexity of ψe, we have

ψe(x(µ)) = ψ(ex(µ)) ≤ (1 − µ)ψ(ex̂) + µψ(ex̌)

for all µ ∈ [0, 1]. On the other hand, it is a well-known fact [84] that the
arithmetic mean bounds above the geometric one. Hence, we have

ex(µ) =
(
ex̂
)1−µ(

ex̌
)µ ≤ (1 − µ)

(
ex̂
)

+ µ
(
ex̌
)

(6.9)

for all µ ∈ (0, 1). Equality holds if and only if ex̂ = ex̌ or, equivalently, if and
only if x̂ = x̌. Thus, combining this and (6.9) with the previous inequality as
well as taking into account that ψ is strictly decreasing yields

ψ((1 − µ)ẑ + µž) < (1 − µ)ψ(ẑ) + µψ(ž), ẑ, ž > 0, ẑ �= ž

for all µ ∈ (0, 1) where we used ẑ = ex̂ > 0 and ž = ex̌ > 0. This proves the
claim. This observation, however, should not tempt the reader to conclude
that F (p) is a convex function of p.

6.2 Convex Statement of the Problem

The main objective of this section is to show that the power control problem
in (6.3) can be transformed into a convex problem, provided that the ψ-
conditions are satisfied. A key ingredient in this formulation is the fact that
SIRk(es) is a log-concave function of the logarithmic power vector [85]

s := logp , p ∈ P+ := P ∩ R
K
++ (6.10)
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where the logarithm is taken elementwise. There is no loss in generality in
assuming that p ∈ P+ (a positive vector) since, in the minimum, every link
must be assigned a positive transmit power (equation (6.7)). Therefore, we
have

min
p∈P

F (p) = inf
p∈P+

F (p) = min
p∈P+

F (p) .

By strict monotonicity of the logarithm function, we see that every p ∈ P+

is associated with a unique s ∈ S where S ⊂ RK is the set of all feasible
logarithmic transmit powers, that is to say,

S := {s ∈ R
K : s = log p,p ∈ P+} . (6.11)

Consequently, if F (p) attains its minimum on P+, for some p∗, then equiv-
alently,

Fe(s) := F (es) =
∑
k∈K

wk ψ(SIRk(es)) (6.12)

attains its minimum on S for s∗ = logp∗.

Lemma 6.2. Let s(µ) := (1 − µ)ŝ + µš. Then,

SIRk(es(µ)) ≥ SIRk(eŝ)1−µSIRk(eš)µ, 1 ≤ k ≤ K (6.13)

for all ŝ, š ∈ RK and µ ∈ [0, 1].

Proof. By Hölder’s inequality (Theorem A.2),

Ik(es(µ)) =
∑
l �=k

vk,le
sl(µ) + zk =

∑
l �=k

(vk,le
ŝl)1−µ(vk,le

šl)µ + z1−µ
k zµ

k

≤
(∑

l �=k

vk,le
ŝl + zk

)1−µ(∑
l �=k

vk,le
šl + zk

)µ

= Ik(eŝ)1−µIk(eš)µ

for all µ ∈ [0, 1]. Thus, considering (6.6) yields

SIRk(es(µ)) ≥ e(1−µ)ŝk+µšk

Ik(eŝ)1−µIk(eš)µ
=

(eŝk)1−µ(ešk)µ

Ik(eŝ)1−µIk(eš)µ
= SIRk(eŝ)1−µSIRk(eš)µ

which completes the proof.

An immediate consequence of Lemma 6.2 is that the logarithmic SIR

hk(s) := log(SIRk(es)), 1 ≤ k ≤ K (6.14)

is a concave function of s ∈ S. Now we use this result to show that Fe(s) is
convex on RK [86, 53].

Theorem 6.3. Fe(s) is convex on RK , i.e., we have

Fe(s(µ)) ≤ (1 − µ)Fe(ŝ) + µFe(š) (6.15)

for all ŝ, š ∈ RK and µ ∈ (0, 1).
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Proof. Let ŝ, š ∈ RK with ŝ �= š be arbitrary. For all µ ∈ (0, 1), we have

Fe(s(µ)) =
K∑

k=1

wkψ(SIRk(es(µ)))

(a)

≤
K∑

k=1

wkψ
(
SIRk(eŝ)1−µSIRk(eš)µ

)

=
K∑

k=1

wkψ
(
e(1−µ)hk(ŝ)+µhk(š)

)

=
K∑

k=1

wkψe

(
(1 − µ)hk(ŝ) + µhk(š)

)
(b)

≤
K∑

k=1

wk

(
(1 − µ)ψe

(
hk(ŝ)

)
+ µψe

(
hk(š)

))
= (1 − µ)Fe(ŝ) + µFe(š) .

(6.16)

While inequality (a) follows from Lemma 6.2 and strict monotonicity of ψ
(the function is strictly decreasing), inequality (b) is due to convexity of
ψe(x) = ψ(ex).

So, Fe is convex on S ⊂ RK , and therefore, with (obvious) convexity of S, we
arrive at an equivalent convex formulation of the power control problem in
(6.3).

Corollary 6.4. Suppose that the ψ-conditions hold, and let s = logp be the
logarithmic power vector. Then, the power control problem

s∗ = argmin
s∈S

F (es) = arg min
s∈S

Fe(s) (6.17)

is a convex optimization problem.

These results establish a strong connection to the results in the first part of
the book. Indeed, by Theorem B.28, we see that ψe is convex on R (as required
by the third ψ-condition) if and only if γ : Q → R++ with γ(ψ(x)) = x, x > 0,
is log-convex. In other words, if the inverse function of ψ is log-convex, then
the power control problem can be transformed into a convex optimization
problem. By Sect. 5.3, the log-convexity property implies that the feasible
QoS region is a convex set.

6.3 Strong Convexity Conditions

In this section, we strengthen Theorem 6.3 by proving sufficient conditions
on strong convexity of Fe(s). For more information about strong convexity,
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the reader is referred to Sect. B.2.1. The main motivation behind the analysis
is to ensure a geometric rate of convergence of the algorithm.

First we are going to show that if ψe : R → R is strongly convex
on any bounded interval on the real line, then Fe is strongly convex on
an arbitrary bounded convex set S ⊂ RK . To this end, let I ⊂ R be
a bounded interval chosen such that hk(s) ∈ I for each k ∈ K and all
s ∈ S. Since hk : RK → R is continuous, it is clear that there exists
such an interval. Therefore, by the assumption (see also Definition B.19),
there exists some constant c > 0 such that ψe

(
(1 − µ)hk(ŝ) + µhk(š)

) ≤
(1 − µ)ψe

(
hk(ŝ)

)
+ µψe

(
hk(š)

) − 1/2cµ(1 − µ)
(
hk(ŝ) − hk(š)

)2
, 1 ≤ k ≤ K,

for all µ ∈ (0, 1) and ŝ, š ∈ S. Incorporating this into inequality (b) in (6.16)
yields Fe(s(µ)) ≤ (1 − µ)Fe(ŝ) + µFe(š) − 1/2cµ(1 − µ)‖h(ŝ) − h(š)‖2

W for
all µ ∈ (0, 1) and ŝ, š ∈ S, where h(s) := (h1(s), . . . , hK(s)) is the vec-
tor of the logarithmic SIRs, W = diag(w1, . . . , wK) is positive definite, and
‖u‖2

W = uT Wu. Since W is positive definite and all norms are equivalent on
finite dimensional metric spaces [87], we deduce that there exists a constant
c1 > 0 such that

Fe(s(µ)) ≤ (1 − µ)Fe(ŝ) + µFe(š) − 1/2c1µ(1 − µ)‖h(ŝ) − h(š)‖2
2

for all µ ∈ (0, 1) and ŝ, š ∈ S. Now note that h : RK → RK is a bijection. This
immediately follows from the fact that R++ → R : x → log(x) is bijection
and p(ω) defined by (5.31) is a bijection, provided that zk > 0 for each
k ∈ K. Moreover, h(s) is Lipschitz continuous on S (Definition B.33) since
the Jacobian matrix of h(s) is bounded in the matrix 2-norm on the bounded
set S. Therefore, as h is bijection, it is actually bilipschitz so that there exists
a constant 0 < M < +∞ with 1/M‖ŝ− š‖2 ≤ ‖h(ŝ)−h(š)‖2 ≤ M‖ŝ− š‖2 for
all ŝ, š ∈ S. Combining this with the inequality above implies that there exists
a constant c2 > 0 such that Fe(s(µ)) ≤ (1 − µ)Fe(ŝ) + µFe(š) − 1/2c2µ(1 −
µ)‖ŝ− š‖2

2 for all µ ∈ (0, 1) and ŝ, š ∈ S. We summarize these observations in
a lemma.

Lemma 6.5. Let the ψ-conditions be satisfied, let zk > 0, k ∈ K, and let
V be an arbitrary nonnegative matrix. In addition, suppose that, for any
bounded interval I ⊂ R, there exists a constant c > 0 (dependent on I) such
that ψe(x) − 1/2cx2 is convex on I. Then, Fe(s) is strongly convex on any
bounded convex subset of RK .

Proof. The lemma follows from the discussion above and Observation B.20
saying that any continuous function f : RK → R is strongly convex (with
modulus of strong convexity c) if and only if f(x) − 1/2c‖x‖2

2 is convex.

Since ψ is assumed to be twice continuously differentiable, the requirement
on strong convexity of ψe is equivalent to (Theorem B.22)

c ≤ ψ′′
e (x) =

d2ψe

dx2
(x) = ex

(
ψ′′(ex)ex + ψ′(ex)

)
, x ∈ I ⊂ R . (6.18)
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If Ψ : R++ → Q is given by (5.24) with α > 1, then (6.18) is satisfied by
ψ(x) = −Ψ(x). Indeed, taking the second derivative of ψe(x) gives ψ′′

e (x) =
(α − 1)ex(1−α), α > 1, which is positive and bounded away from zero on any
bounded interval I ⊂ R. The strong convexity condition is also satisfied by
ψ(x) = −Ψ(x) with Ψ given by (5.25) since then ψ′′

e (x) = (α − 1)ex/(1 +
ex)α, α ≥ 2. In contrast, the requirement is not met when Ψ(x) = log(x), x >
0 in which case the second derivative of ψe(x) = −x is identically zero on R.

Note that, in the lemma above, there are no additional limitations on the
choice of the channel state matrix V ≥ 0. On the extreme, V may even be the
zero matrix, in which case Fe(s) =

∑
k wkψ( esk

zk
) =
∑K

k=1 wkψe(sk − log zk).
Thus, ∇2Fe(s) = diag

(
w1ψ

′′
e (s1 − log z1), . . . , wKψ′′

e (sK − log zK)
)
,V = 0.

Now we see that if (6.18) holds and V = 0, the Hessian of F (s) is positive
definite on any bounded subset of RK . In contrast, if ψ(x) = − log(x), x > 0,
we obtain Fe(s) =

∑
k wk log zk−wT s which is linear in s ∈ R

K , and therefore
not strongly convex. As Ψ(x) = log(x), x > 0, is of great interest for wireless
applications (see Sects. 5.2.3 and 5.3), we prove a sufficient condition under
which the strong convexity property of Fe(s) is guaranteed on any bounded
convex subset of RK , provided that the ψ-conditions are satisfied. It turns
out that some very mild restrictions on the channel state matrix V ≥ 0 are
sufficient to reestablish the strong convexity property of Lemma 6.5.

Lemma 6.6. Let V ≥ 0 be a matrix such that, for each l ∈ K, there exists
k �= l with vk,l > 0. Then, Fe(s) is strongly convex on any bounded convex
subset of RK .

In other words, each column of the matrix V is required to have at least one
positive entry.

Proof. If ψ(x) = − logx, x > 0, then ψe(x) = −x, x ∈ R. So, since ψe(x)
is convex and strictly decreasing, it is sufficient to consider ψe(x) = −x. In
other words, if the lemma holds for the linear function, then it holds for any
function satisfying ψ-conditions.

Suppose that S is any bounded convex subset of RK . Let ŝ, š ∈ S with
ŝ �= š be arbitrary. Note that the lemma has the same setup as Theorem
2.12 and R → R++ : x → ex is a log-convex function. Hence, proceeding
essentially as in the proof of Theorem 2.12 shows that there exists k0 ∈ K
such that

fk0(µ) := Ik0(e
s(µ)) and gk0(µ) := log fk0(µ)

are strictly log-convex and strictly convex functions of µ ∈ (0, 1), respectively.
In fact, gk0(µ) is strongly convex. To see this, let l0 ∈ K with ŝl0 �= šl0 be
arbitrary, and let k0 ∈ K, k0 �= l0, be such that vk0,l0 > 0. Note that by
assumption, such an index exists. Taking the second derivative of gk0(µ)
yields
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g′′k0
(µ) =

(∑
l esl(µ)vk0,l(šl − ŝl)2

)
Ik0 (es(µ)) − (∑l esl(µ)vk0,l(šl − ŝl)

)2
(Ik0 (es(µ)))2

.

Now it may be verified that, for any x1, . . . , xn ∈ R and nonnegative constants
a1, . . . , an,

(∑n
i=1 aix

2
i

)(∑n
j=1 aj

)−(∑n
i=1 aixi

)2 = 1
2

∑
i,j aiaj(xi−xj)2 ≥ 0.

Hence, as vk0,l0 > 0, zk0 > 0 and ŝ, š are members of a bounded set S, there
exists a constant c > 0 such that

g′′k0
(µ) ≥ zk0

∑
l e

sl(µ)vk0,l(šl − ŝl)2

(Ik0(es(µ)))2
≥ c(šl0 − ŝl0)

2

for all µ ∈ (0, 1) and ŝ, š ∈ S. From this, it follows that gk0(µ) is strongly
convex, and hence hk0(s(µ)) = sk0(µ) − gk0(µ) is strongly concave on S.
This is equivalent to saying that there exists a constant c > 0 such that
hk0(s(µ)) ≥ (1 − µ)hk0(ŝ) + µhk0(š) + 1/2cµ(1 − µ)‖š − ŝ‖2

2 for all µ ∈
(0, 1) and ŝ, š ∈ S. So, with ψe(x) = −x, we obtain ψe(hk0(s(µ))) ≤ (1 −
µ)ψe

(
hk0(ŝ)

)
+ µψe

(
hk0(š)

) − 1/2cµ(1 − µ)‖ŝ − š‖2
2 for all µ ∈ (0, 1) and

ŝ, š ∈ S. This implies that for any fixed ŝ, š ∈ S, there exists at least one
addend in

∑
k wkψe(hk(s(µ))) for which the inequality above is satisfied, with

an appropriately chosen positive constant c > 0. From this, strong convexity
of Fe(s) on any bounded convex subset of RK follows.

Let us summarize both lemmas in a theorem.

Theorem 6.7. Let the ψ-conditions be satisfied, and let z > 0. Suppose that
one of the following holds.

(i) ψe is strongly convex on any bounded interval on the real line.
(ii) Each column of V has at least one positive entry.

Then, Fe is strongly convex on any bounded convex subset of R
K .

It is important to emphasize that in the setup of Theorem 6.6, the channel
state matrix is not necessarily irreducible. To illustrate the result, consider
the following matrix

V =

⎛
⎝ 0 v1,2 v1,3

v2,1 0 0
0 0 0

⎞
⎠ v1,2, v1,3, v2,1 > 0 .

The matrix is reducible and satisfies the condition of Lemma 6.6. It may be
verified that with this choice of V, the Hessian of Fe(s) is positive definite on
any bounded subset of RK . The explanation is basically the same as in Sect.
2.3.3: For each l, there is a k such that vk,l > 0. This implies that each link is
an interferer to some other link. Thus, since the noise term is positive for all
k ∈ K, it follows that for each l ∈ K, there must exist k ∈ K such that Ik(es)
is strictly log-convex along the lth coordinate of s. This in turn implies that
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Fe(s) is strongly log-convex on any bounded convex set. However, this is no
longer true if we take the transpose of the matrix above

V =

⎛
⎝ 0 v1,2 0

v2,1 0 0
v3,1 0 0

⎞
⎠ .

Now link 3 is exposed to interference from link 1 but it is an interferer to no
other link. Consequently, there is no k such that Ik(es) is strictly log-convex
along the third coordinate of s. Choosing ψ(x) = − logx, x > 0 yields Fe(s)
that is linear in s3, and hence the function cannot be strongly convex.

By Theorem B.28, we know that the inverse function of ψ is strictly log-
convex on Q if and only if ψe is strictly convex on R++, which is true if
ψe is strongly convex on any bounded interval on the real line. Therefore,
Lemma 6.5 corresponds in some sense to Theorem 2.11. In contrast, Lemma
6.6 corresponds to Theorem 2.12, which has the same setup and asserts that,
for every ŝ, š ∈ Fγ , there exists k ∈ K such that pk(ω(µ)) is a strictly log-
convex function of µ ∈ [0, 1]. The reader should notice a striking analogy
between these results. In fact, the proof of Lemma 6.6 is based on the proof
of Theorem 2.12. The last theorem in Sect. 2.3.3 (Theorem 2.14) suggests that
each addend in

∑
k wkψe(hk(s)) would be strongly convex on any bounded

convex set if V was irreducible, regardless of the choice of ψe for which the
ψ-conditions hold. Indeed, if V is irreducible, an examination of the proof
of Theorem 2.14 reveals that Ik(es) is strictly log-convex on RK for each
k ∈ K. Therefore, proceeding essentially as in the proof of Lemma 6.6 shows
that ψe(hk(s)) is strongly log-convex on any bounded convex subset of RK ,
provided that V is an irreducible matrix. This may have a positive effect on
the convergence rate of our algorithms.

6.4 Gradient Projection Algorithm

Under the assumption of the ψ-conditions, we consider the following recursive
gradient projection algorithm with a constant step size δ > 0 (small enough)
[83]:

s(n + 1) = ΠS

[
s(n) − δ∇Fe(s(n))

]
, s(0) ∈ S, n ∈ N0 (6.19)

where ΠS[x] denotes the projection of x ∈ RK on S (with respect to the
Euclidean norm; see Theorem B.32). The kth partial derivative ∇kFe(s) is
equal to

∇kFe(s) =
∂Fe

∂sk
(s) = esk

(
gk(es) −

∑
l �=k

vl,kSIRl(es)gl(es)
)
, k ∈ K, (6.20)

with s = logp and
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gk(p) =
wkψ′(SIRk(p))

Ik(p)
, k ∈ K. (6.21)

The operation of projecting a vector in RK on S can be easily parallelized. We
will discuss this in Sect. 6.4.4. In contrast, the problem of parallel computing
∇kFe(s) is anything but trivial. This problem is addressed in Sect. 6.5. In
the following section, we show that the sequence {s(n)} generated by (6.19)
converges to a stationary point that minimizes Fe(s) over S.

6.4.1 Global Convergence

Although the problem is convex, it is not obvious that the algorithm converges
to a stationary point (Definition B.31) of the problem. This is because, in a
general case, some step size control is necessary to obtain the convergence.
In view of distributed implementation, however, the step size is assumed to
be constant. It is well known [83, 88] (see also Sect. B.4) that the gradient
projection algorithm with a constant step size converges to a stationary point
if each of the following is satisfied:

(i) Fe(s) is bounded below on S,
(ii) Fe(s) is continuously differentiable and the gradient ∇Fe(s) is Lipschitz

continuous on S (see Definition B.33), and
(iii) 0 < δ < 2/M where M is the Lipschitz constant. Note that this condi-

tion can be satisfied only if ∇Fe(s) is Lipschitz continuous.

Whereas the first condition is satisfied by assumption, the Lipschitz continu-
ity condition is not met on S. Indeed, if we let the kth entry of ŝ = š + c ∈
S, c ∈ R, ŝ �= š, tend to −∞ while keeping all the other entries constant, it is
easy to see from (6.20) and (6.7) that ‖∇Fe(ŝ)−∇Fe(š)‖2 may grow without
bound. 2 However, the problem stems from unboundedness of S and can be
evaded by letting the step size depend on the start point. Indeed, it is intu-
itive to expect that for every given s(0) ∈ S, ∇Fe(s) satisfies the Lipschitz
continuity condition on

S := {x ∈ S : Fe(x) ≤ Fe(s(0)) < +∞} . (6.22)

Obviously, S is bounded and, by convexity of Fe(s), a convex set for every
s(0) ∈ S. As shown below, the Lipschitz continuity property is a consequence
of the fact that the Hessian ∇2Fe(s) exists and is continuous on S.

Lemma 6.8. Suppose that ψ-conditions hold, s(0) ∈ S is arbitrary, and S is
given by (6.22). Then, ∇Fe(s) is Lipschitz continuous on S, that is to say,
there exists a constant M > 0 such that

‖∇Fe(ŝ) −∇Fe(š)‖2 ≤ M‖ŝ− š‖2 (6.23)

for all ŝ, š ∈ S.
2 This is not the case when ψ(x) = log(1/x). See the brief discussion at the end of

this section.
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Proof. Let ŝ, š ∈ S be arbitrary. By the twice continuous differentiability
of ψe(x), x ∈ R, each entry of the Hessian matrix ∇2Fe(s) is a continuous
function on RK . This implies that the gradient ∇Fe : RK → RK is Gateaux
differentiable (Definition B.10), and hence, by [89, p. 69], one has

‖∇Fe(ŝ) −∇Fe(š)‖2 ≤ sup
0≤µ≤1

‖∇2Fe(ŝ + µ
(
š− ŝ)

)‖2‖ŝ− š‖2

where ‖A‖2 =
√

λmax is the induced matrix 2-norm and λmax is the largest
eigenvalue of AT A (see (A.6) in Sect. A.2 for the definition of a matrix
induced norm). Now, because each entry of s ∈ S is bounded, it is obvious
that the Hessian ∇2Fe(s) is bounded above over S in the matrix 2-norm.
Defining this bound as M yields (6.23).

In fact, ∇Fe(s) satisfies the Lipschitz continuity condition on every bounded
subset of S and, in particular, on the convex set S for any s(0) ∈ S. Thus, by
Lemma 6.8 and Theorem B.35, if

0 < δ < 2/M, M = sup
s∈S

‖∇2Fe(s)‖2 (6.24)

the sequence {s(n)} generated by (6.19) will stay within the set S for
every n ∈ N0. Moreover, the algorithm will decrease the value of Fe(s),
unless a stationary point s∗ ∈ S has been reached. This point satisfies
(s − s∗)T∇Fe(s∗) ≥ 0 for every s ∈ S (Theorem B.30 and Definition B.31).
In fact, due to convexity of Fe(s) shown in Sect. 6.2, we can conclude that s∗

minimizes Fe(s) over S, and therefore p∗ = es∗ minimizes F (p) over P. Let
us summarize these observations in a theorem [53, 55].

Theorem 6.9. Let the ψ-conditions be satisfied, and let {s(n)} be a sequence
generated by (6.19). Then, for sufficiently small δ > 0, {s(n)} converges to a
limit point s∗ ∈ S. Moreover, the limit point minimizes Fe(s) over S.

Remark 6.10. It is important to emphasize that the choice of δ in (6.19) de-
pends on the start point s(0). However, this should not pose a significant
problem to wireless networks where successful transmission requires some
minimum SIR at the output of each linear receiver. This information could
be used to predetermine a worst-case step size that would work under any
feasible scenario at the possible expense of the convergence rate. In order
to ensure some signal-to-interference ratios, nodes may start the iteration
process with predefined transmit powers. Furthermore, the effective interfer-
ence Ik(p) should not exceed some predefined threshold for each 1 ≤ k ≤ K.
This could be achieved by limiting the number of active links with not too
large path attenuations.

The Hessian of Fe(s) can be easily calculated to give
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∇2Fe(s) =
K∑

k=1

wkψ′′
e

(
hk(s)

)∇hk(s)∇hk(s)T

+
K∑

k=1

wkψ′
e

(
hk(s)

)∇2hk(s) .

(6.25)

We see that, by concavity of hk(s) and strict decreasingness of ψe, the second
addend is positive semidefinite. The first addend is positive semidefinite as
well since ψe(x) = ψ(ex) is convex. As the sum of positive semidefinite ma-
trices is positive semidefinite, this implies that the Hessian matrix is positive
semidefinite if the ψ-conditions are satisfied. This is in full agreement with
Theorem 6.3, which, however, does not require differentiability.

The Lipschitz constant M in (6.24) is equal to M = sups∈S λmax(∇2Fe(s)).
A closed form solution for the supremum is in general an intricate problem.
In order to obtain a simpler condition, note that, for any matrix A, we
have ρ(A) ≤ ‖A‖∞ and ρ(A) ≤ ‖AT ‖∞ where ρ(A) denotes the spec-
tral radius of A (Definition A.8) and ‖A‖∞ is defined by (A.7). Hence,
ρ(A) ≤ min{maxi

∑
j |ai,j |, maxj

∑
i |ai,j |}. Now since the Hessian matrix

is symmetric, we obtain

λmax(∇2Fe(s)) ≤ κ(s) := max
i

∑
j

|(∇2Fe(s))i,j | .

Therefore, choosing 0 < δ < 2/M with M = sups∈S κ(s) ensures the con-
vergence of the algorithm. When compared with (6.24), the Lipschitz con-
stant here is significantly easier to estimate due to a simple relationship be-
tween κ(s) and the entries of the Hessian matrix. In a special case, when
Ψ(x) = −ψ(x) = log(x), x > 0, an examination of (6.25) reveals that
∇2Fe(s) = −∑k wk∇2hk(s) where

(∇2hk(s)
)
i,j

=

{
(esi vk,i)

2−esi vk,iIk(es)
Ik(es)2 i = j �= k

esi vk,ie
sj vk,j

Ik(es)2 elsewhere .

Since Ik(es) ≥ zk > 0 for all s ∈ S, the Hessian matrix is bounded above in the
matrix 2-norm on S. Therefore, in this special case, the Lipschitz continuity
condition is satisfied on S. This in turn implies that there is a step size δ that
works for any start point.

6.4.2 Rate of Convergence

The rate (or speed) of converge says how fast the method converges to the
optimal solution, and therefore a fast convergence rate is highly desired. How-
ever, due to the dynamic nature of wireless networks as well as strict limi-
tations on wireless resources, it is clear that only a relatively small number
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of iterations can be carried out in wireless networks. For this reason, the
algorithms are usually required to have a faster initial convergence.

As far as the rate of convergence is concerned, much more powerful algo-
rithms than that in (6.19) can be devised to solve the power control prob-
lem [88]. These algorithms, however, usually require extensive coordination
between nodes in a network. For instance, the choice of the step size can
be optimized in every iteration to improve the rate of convergence. On the
other hand, such a step size control may require the exchange of a significant
amount of information between nodes, and hence waste scarce wireless re-
sources. Newton-like methods may provide a super-linear rate of convergence
but require the inverse of the Hessian matrix which is prohibitive for wireless
network applications.

In case of convex problems (each local optimum is a global one), rate of
convergence is evaluated in terms of an error function e : R

K → R satisfying
e(x) ≥ 0 for all x ∈ RK and e(x) = 0 if and only if x = x∗ where x∗ is a
global optimum [88]. A typical choice of an error function that is assumed in
what follows is the Euclidean distance

e(x) = ‖x− x∗‖2 . (6.26)

As for the power control algorithm presented above, everything we can guar-
antee is a geometric (or linear) rate of convergence defined as follows [88].

Definition 6.11. A sequence of real-valued vectors {x(n)} is said to converge
geometrically to x∗ if there exist constants a > 0 and β ∈ (0, 1) such that

e(x(n)) ≤ aβn . (6.27)

Provided that δ is sufficiently small, each iteration update of the power control
algorithm in (6.19) stays within the bounded convex set S defined by (6.22).
At the same time, Theorem 6.7 asserts that Fe(s) is strongly convex on any
bounded subset of RK . Thus, considering Theorem B.36 yields the following
corollary.

Corollary 6.12. Suppose that one of the following holds:

(i) ψe : R++ → Q is strongly convex on any bounded interval in R,
(ii) each column of V has at least one positive entry.

Then, provided that δ is chosen positive and small enough, the sequence
{s(n)} generated by (6.19) converges to s∗ geometrically.

Geometric convergence is obtained if lim supk→∞
e(x(n+1))

e(x(n)) ≤ β for some
β ∈ (0, 1). Thus, asymptotically (n → ∞), the error is reduced by a factor
of at least β ∈ (0, 1) at each iteration. So, a geometric convergence rate is a
fairly satisfactory rate of convergence, provided the factor β is not too close
to unity. Among others, this factor is influenced by the step size δ. For this
reason, it may be beneficial to determine an appropriate step size at the
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beginning of each frame interval. As already mentioned before, the step size
cannot be too large since otherwise divergence will occur. On the other hand,
a small step size ensures convergence but the rate of convergence may be
very slow. To speed up the rate of convergence, an appropriate scaling can
be performed.

6.4.3 Diagonal Scaling

The rate of convergence of gradient methods depends on the condition num-
ber of ∇2Fe(s(n)), which is defined as the ratio of the largest eigenvalue of
the Hessian to its smallest one [88]. If the Hessian is positive definite on S (a
geometric convergence), the condition number is finite but it can still be rel-
atively large causing gradient methods to converge very slow. In such cases,
the problem can often be alleviated by appropriately scaling the update di-
rection. The scaled power control algorithm with a constant step size takes
the form

s(n + 1) = Πn
S

[
s(n) − δ D(n)∇Fe(s(n))

]
, s(0) ∈ S (6.28)

where D(n) is a symmetric positive definite matrix for every n. The projection
in (6.28) is performed with respect to a different norm given by ‖x‖D(n) =√

xT D(n)x. Thus, for any fixed x ∈ RK , Πn
S [x] is a unique vector that

minimizes ‖y − x‖D(n) over all y ∈ S.
Ideally, D(n) should be the inverse of the Hessian matrix of Fe(s(n)) but

this would require extensive global coordination and centralized computation.
Thus, a reasonable choice of D(n) is a matrix for which all the diagonal entries
of D(n)

1
2∇2Fe(s(n))D(n)

1
2 are approximately equal to unity. This may be

achieved by a diagonal matrix D(n) whose kth diagonal element dk(n) is
given by

dk(n) =
(∂2Fe

∂s2
k

(
s(n)
))−1

where the Hessian matrix of Fe(s) is given by (6.25).

6.4.4 Projection on a Closed Convex Set

In general, gradient projection algorithms are not amenable to distributed
implementation as the computation of the projection (6.19) may involve all
components of the update vector. Fortunately, the geometric structure of S
makes a parallel implementation possible.

First of all, Theorem B.32 asserts that the projection exists and is unique
since S is a closed convex set (Definitions B.1 and B.15). By Theorem B.32,
given an arbitrary n ∈ N0, the projection ΠS[u(n)] of the update vector
u(n) = s(n) − δ∇Fe(s(n)) on S with respect to the Euclidean norm is equal
to
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ΠS[u(n)] = argmin
x∈S

‖u(n) − x‖2
2 .

In what follows, assume that n ∈ N0 is arbitrary but fixed, and let u = u(n).
From (4.6) and s = log(p), we see that S is the N -fold Cartesian product
S = S1 × · · · × SN where

Sm =
{
x ∈ R

|K(m)| :
|K(m)|∑
k=1

exk ≤ Pm

}
.

Here Pm is the individual power constraint on node m ∈ N. Each of these sets,
say set Sm, is a closed subset of R

|K(m)| with R
K = R

|K(1)| × · · · × R
|K(N)|.

Therefore, it follows that (see also [88]) the projection of u on S can be
accomplished by projecting u(m) on Sm ⊂ R|K(m)| where u(m) ∈ R|K(m)| is a
subvector of u such that u(m) = (uk)k∈K(m).

Obviously, the projection of u(m) on Sm can be carried out at node m ∈ N
without any coordination with other nodes. In other words, each node, say
node m, must solve the following problem

ΠSm [u(m)] = argmin
x∈Sm

‖u(m) − x‖2
2

which is a standard quadratic optimization problem over a closed convex set
Sm ⊂ R|K(m)|. Obviously, if u(m) ∈ Sm, then ΠSm [u(m)] = u(m). Finally, note
that in the special case when there are individual power constraints on each
link P1, . . . , PK , then the projection of u on S is obtained by projecting the
kth component of u on (−∞, log Pk] (the projection on a box). So, in this
case, the projection is a straightforward operation.

6.5 Distributed Implementation

An essential advantage of the algorithm is its amenability to efficient imple-
mentation in distributed networks. In particular, there is no need for step size
control or complex operations such as matrix inversion. The projection oper-
ation can be performed without any coordination between nodes. Actually,
the major problem is to parallelize the computation of ∇Fe(s) in such a way
that each node, say node n, can calculate ∇kFe(s) = ∂Fe

∂sk
(s) for all k ∈ K(n),

without resorting to extensive internode communication. The parallelization
can be seen as separating the algorithm into K local algorithms operating
concurrently at different transmitter–receiver pairs.

6.5.1 Local and Global Parts of the Gradient Vector

Consider the nth iteration in (6.19) and assume that p = p(n) = es(n) is the
nth power vector. Using s = logp, it is easy to see that ∇Fe(s) defined by
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(6.20) is a version of ∇F (p) scaled with the positive definite diagonal matrix
P = diag(p1, . . . , pK) = diag(es1 , . . . , esK ):

∇Fe(s) = P∇F (p), s = logp . (6.29)

Thus, ∇kFe(s) can be easily obtained from ∇kF (p) by multiplying it with
pk = esk . In what follows, we focus on ∇F (p). Considering (6.20) reveals
that we can rewrite the gradient vector as follows

∇F (p) = (I + Γ(p))g(p)︸ ︷︷ ︸
η(p)<0

− (I + VT )Γ(p)g(p)︸ ︷︷ ︸
θ(p)<0

= η(p) − θ(p) . (6.30)

Here and hereafter, η(p) = (η1(p), . . . , ηK(p)), θ(p) = (θ1(p), . . . , θK(p)),
g(p) := (g1(p), . . . , gK(p)) with gk(p) defined by (6.21) and

Γ(p) := diag
(
SIR1(p), . . . ,SIRK(p)

)
.

So the problem of computing ∇kF (p) at the kth logical transmitter is equiv-
alent to the computation of both ηk(p) and θk(p) at this transmitter. Let us
first focus on ηk(p). The problem of computing θ(p) is deferred to the next
section.

It follows from (6.21) that

ηk(p) =
(
1 + SIRk(p)

)
gk(p) =

(
1 + SIRk(p)

)wkψ′(SIRk(p))
Ik(p)

. (6.31)

Hence, ηk(p) can be easily calculated at a node where link k originates, pro-
vided that the signal-to-interference ratio SIRk(p) is known at this node.
In fact, knowledge of a good estimate of the signal-to-interference ratio in
every iteration and for each logical transmitter–receiver pair is crucial for
the algorithm to be implemented. In order to obtain an estimate of SIR,
each transmitter may send a training sequence3 that is known to the re-
spective receiver. It is important to emphasize that all logical transmitters
must be synchronized so that the transmission can take place simultaneously
on all links. Using some standard estimation method (see for instance [90]
for further information and references), each logical receiver estimates the
signal-to-interference ratio on its link and sends the estimate back to the
corresponding transmitter (node) using a reliable low-rate feedback channel.

In this book, we do not address the problem of estimating SIR. Instead, it
is assumed that a good estimate of SIR is available at the corresponding trans-
mitter and receiver side. Based on this information, each logical transmitter,
say the transmitter on link k, is able to calculate the estimate of gk(p) < 0
and ηk(p). We also assume that the kth receiver is able to determine the
interference Ik(p) based on the SIR estimate.
3 By a training sequence, we mean a deterministic sequence of symbols gener-

ated by a pseudorandom number generator. We assume that the elements of
this sequence “approximate” zero-mean independent and identically distributed
random variables.



6.5 Distributed Implementation 145

6.5.2 Adjoint Network

In contrast to ηk(p), the problem of computing

θk(p) = SIRk(p)gl(p) +
∑
l �=k

vl,kSIRk(p)gl(p) (6.32)

is significantly more tricky. Interestingly, θk(p) can be estimated at each link
(node) by a scheme that relies on the concept of an adjoint network defined
as follows [54, 53, 55].

Definition 6.13 (Adjoint Network). Consider an arbitrary wireless net-
work with K logical links and the channel state matrix V. Let us call it the
primal network. Then, a network with K logical links and the channel state
matrix U ∈ R

K×K
+ is said to be adjoint to the primal network if U = VT .

Note that for any given primal network, an adjoint network is not unique in
general. The definition above merely states that the channel state matrix of
an adjoint network is a transpose matrix of the channel matrix of the primal
network. In a special case, if V = VT , then any network is adjoint to itself.
In what follows, assume that a primal network with the channel state matrix
V is given.

The reason for introducing the definition becomes more clear if we have
a look at θ(p) in (6.30) or (6.32). We see that θ(p) results from the multipli-
cation of the vector Γ(p)g(p) with (I + VT ). This suggests that the entries
of the vector θ(p) may be made available to some nodes in the network
by transmitting appropriately scaled pilot symbols over an adjoint network.
Obviously, the following two conditions should be satisfied:

(i) the kth logical transmitter in an adjoint network has an access to the
kth coordinate of the vector Γ(p)g(p), and

(ii) the kth coordinate of (I + U)Γ(p)g(p) corresponds to the kth logical
transmitter in the primal network where U is the channel state matrix
of an adjoint network.

In order to satisfy both conditions, we consider a so-called reversed network
defined as follows.

Definition 6.14 (Reversed Network). We call a network reversed if the
roles of transmitters and receivers on each logical link in a primal network
are reversed. In a reversed network, logical link k ∈ K is a link between the
kth logical receiver in the primal network and the kth logical transmitter.

By the reversed roles we mean that, in each transmitter–receiver pair, say the
pair on logical link k, the kth transmitter becomes the kth receiver and vice
versa. The corresponding link in a reversed network is labeled by k. A nice
feature of a reversed network is that the first condition can be easily met. In
fact, the kth logical transmitter in a reversed network knows SIRk(p) and



146 6 Power Control Algorithm

Ik(p) since it is the kth receiver in the primal network (see the previous sec-
tion). Consequently, since ψ′(x) is common for all links, the kth transmitter in
the primal network only needs to inform the kth receiver about its weight wk.
However, this must be done only once before starting the iteration process.
The second condition is automatically satisfied by a reversed network.

Unfortunately, in general, a reversed network is not adjoint to the primal
network. To see this, let us write V as V = DG, where

D = diag
(
1/V1, . . . , 1/VK

)
is a diagonal matrix of the inverse path gains (see Sect. 4.3.1) and

G = (Vk,l)1≤k,l≤K ∈ R
K×K
+ , trace(G) = 0

incorporates the path gains (coupling factors) between different links. Now
since the roles of logical transmitters and receivers are reversed on each link
in a reversed network, its channel state matrix U is equal to

U = DGT .

Obviously, we have U �= VT , unless D is a scaled identity αI for some α > 0.
Unfortunately, D is not a scaled identity in general, which is simply due

to different channel realizations on different logical links. In contrast, if the
wireless channel is an additive white Gaussian channel (AWGN), then D is a
scaled identity, provided that all receivers are normalized appropriately. For
instance, consider a network based on code division multiple access (CDMA)
from Sect. 4.3.4. It follows that if hk,k = 1 for each k ∈ K (AWGN channel),
then Vk = |〈ck, sk〉|2 where ck ∈ RJ and sk ∈ RJ are the logical receiver on
link k and the corresponding spreading sequence, respectively. Thus, normal-
izing all receivers such that |〈ck, sk〉|2 = 1/α yields D = αI. Without loss of
generality, we can assume that |〈ck, sk〉|2 = 1.

Remark 6.15. In what follows, it is assumed that Xk is an information-
bearing symbol transmitted over the wireless channel. In particular, we do not
care about the physical-layer realization. So, depending on the transmission
technique, Xk may be either a symbol spread by some spreading sequence
(CDMA) or by some beam-forming vector.

Using the above definitions, the channel state matrix of an adjoint network
is V = GT D. Comparing this with DGT of a reversed network, we see that
instead of multiplying GT by D on the right, the matrix is multiplied by D
on the left. A straightforward examination shows that the right-hand side
multiplication is achieved if each logical transmitter in a reversed network
inverts its “own” wireless channel such that the resulting path attenuation
between each transmitter–receiver pair is equal to 1. The effect of this on
the channel state matrix U = DGT of the reversed network is that D = I
(due to the channel inversions) and (GT )k,l = Vl,k/Vl (due to the effect of the
channel inversions on other links). Therefore, in this case, we obtain U = VT .
We summarize these observations in a theorem.
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Theorem 6.16. Assume a flat fading wireless channel, with the channel co-
efficient of link k ∈ K being equal to hk,k ∈ C, hk,k �= 0. Then, a reversed
network is adjoint to a given primal network if each logical transmitter in
the reversed network inverts its channel by multiplying transmit symbols by
1/hk,k.

We point out that these ideas can be extended to frequency-selective channels,
provided that all channels are invertible. In such a case, each symbol should
be convoluted with the inverse impulse response of the corresponding wireless
channel. Given some primal network, in all that follows, the adjoint network
refers to the reversed network in which each transmitter performs the channel
inversion. To illustrate the theorem, we neglect the Gaussian noise (see a
remark on the noisy case in Section 6.5.3) and assume that Vk,l = |hk,l|2 and
Vk = |hk,k|2 with |hk,k| > 0 where hk,l ∈ C is a given channel coefficient.
In other words, hk,l, 1 ≤ k, l ≤ K, are realizations of the wireless channel
at the beginning of some frame interval. Now if all logical transmitters in
the reversed network concurrently transmit sequences of zero-mean random
symbols Xk multiplied by 1/hk,k, then the resulting network may be easily
seen to have the channel state matrix VT .

The concept of an adjoint network is illustrated in Fig. 6.1 under the
assumption of noiseless links. In this example, the signal-to-interference ra-

S2

S1 h1,1

h1,2

h2,2

h2,1

E1

E2

Fig. 6.1. In the primal network, the received signal samples at E1 and E2 are y1 =
h1,1X1+h1,2X2 and y2 = h2,2X2+h2,1X1, respectively, where X1, X2 are zero-mean
independent information-bearing symbols with E[|X1|2] = p1, E[|X2|2] = p2. In the
adjoint network, E1 and E2 transmits X1/h1,1 and X2/h2,2, respectively, so that
the received signal samples are ỹ1 = X1 + h2,1/h2,2X2 and ỹ2 = X2 + h1,2/h1,1X1.

tios in the primal network at E1 and E2 are SIR1(p) = p1/(v1,2 p2) with
v1,2 = |h1,2|2/|h1,1|2 and SIR2(p) = p2/(v2,1p1) with v2,1 = |h2,1|2/|h2,2|2,
respectively. So, the channel state matrix is

V =

⎛
⎝ 0 |h1,2|2

|h1,1|2
|h2,1|2
|h2,2|2 0

⎞
⎠ .

In the adjoint network, we have SIR1(p) = p1/(v2,1p2) (at node S1) and
SIR2(p) = p2/(v1,2p1). The channel state matrix for the adjoint network is
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therefore given by ⎛
⎝ 0 |h2,1|2

|h2,2|2
|h1,2|2
|h1,1|2 0

⎞
⎠ = VT .

This procedure straightforwardly extends to networks with an arbitrary num-
ber of links, provided that the network and signal model introduced in Chapt.
4 holds.

Finally, we point out that the channel inversion in the adjoint network
may cause some problems. Indeed, if |hk,k| is small, then the transmit power
on link k in the adjoint network can be unacceptably high, thereby violating
some power constraints. A simple but effective solution to this problem is
to define a certain threshold and prevent those links from transmission for
which the path attenuation falls below this threshold. In addition, each logical
transmitter in the adjoint network, say the transmitter on link k, can scale
its training sequence by α/hk,k for some 0 < α ≤ 1 common to all links.
The effect of such a scaling can be easily corrected at the receiver, provided
that all transmitters use the same scaling factor. Obviously, a good choice of
α depends on the realization of the wireless channel, and therefore such an
approach requires some coordination between nodes.

6.5.3 Distributed Handshake Protocol

The basic idea is to use the primal network and the adjoint network alter-
nately to obtain an estimate of ∇kF at the kth transmitter in the primal
network. To illustrate the principle, let us consider the nth iteration of the
power control algorithm in (6.19). Before starting the iteration process, each
transmitter reports the current weight to its receiver.

Primal Network: Assume that the “local part” ηk(p(n)) of the gradient
vector has already been estimated using the procedure described in Sect.
6.5.1. Let η̂k(p(n)) be the estimate such that

η̂k(p(n)) ≈ ηk(p(n)) = gk(p(n)) + SIRk(p(n))gk(p(n)) .

By the procedure of Sect. 6.5.1, both SIRk(p(n)) and Ik(p(n)) are known to
the kth receiver. Based on this information as well as on the knowledge of
wk, the kth logical receiver computes gk(p(n)) < 0 given by (6.21).

Adjoint Network: All logical transmitters concurrently send sequences
of zero-mean independent symbols Xk (not necessarily known to the re-
ceivers) with E[|Xk|2] = |SIRk(p(n))gk(p(n))| for each k ∈ K. Note that
this involves the channel inversion as specified in Theorem 6.16 so that the
actual transmit powers are higher than |SIRk(p(n))gk(p(n))|. Each logical
receiver, say receiver k, estimates the received power by averaging over all
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symbol intervals and multiplies the result by −1 (since gk(p(n)) < 0) to
obtain

θ̂k(p(n)) ≈ −
(∣∣SIRk(p(n))gk(p(n))

∣∣+∑
l �=k

vl,k

∣∣SIRk(p(n))gk(p(n))
∣∣) .

If the Gaussian noise is not negligible (when compared with the multiple
access interference), then the noise variance must be estimated (if not known)
and subtracted from the estimated received power.

Now since the kth receiver in the adjoint network is the kth transmitter
in the primal network, the latter one computes

∇kF̂ (p(n)) = η̂k(p(n)) − θ̂k(p(n)), 1 ≤ k ≤ K

which is “close” to ∇kF (p(n)), provided that the estimates are accurate
enough.

The following list summarizes the whole procedure for the nth iteration.
In the following description, “transmitter” and “receiver” refer to logical
transmitters and logical receivers in the primal network. We assume that the
function ψ is known at all nodes and that the weight wk is known at both
sides of link k ∈ K.

1. Concurrent transmission of training sequences at powers (p1(n), . . . , pK(n)).
2. Receiver side estimation of the signal-to-interference ratios and interferences.

Based on these estimations, each receiver calculates gk(p(n)), k ∈ K.
3. All receivers feed the signal-to-interference ratios back to the corresponding

transmitters using a per-link control channel. Transmitter-side computation of
gk(p(n)), and then ηk(p(n)) for each k ∈ K.

4. Concurrent transmission of sequences of zero-mean independent symbols Xk

with
E[|Xk|2] = |SIRk(p(n)) · gk(p(n))|, k ∈ K

over the adjoint network. Note that the transmission over the adjoint network
involves channel inversion (Theorem 6.16).

5. Transmitter side estimation of the received power and subtraction of noise
variances from the estimates to obtain θk(p(n)). Since ηk(p(n)) and θk(p(n))
are known at transmitter k, the transmitter computes

∇kF̂ (p(n)) = ηk(p(n)) − θk(p(n))

= gk(p(n)) − (VT Γ(p(n))g(p(n)))k

where we assumed that all the variables have been estimated perfectly.
6. Update of transmit powers according to (6.19) with s(n) = log p(n)
7. n → n + 1.
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6.5.4 Noisy Measurements

In the previous section, we assumed that all unknown variables such as the
received powers or the signal-to-interference ratios can be estimated with
accuracy allowing for the treatment of the algorithm within the framework
of deterministic optimization theory. However, due to estimation errors and
other distorting factors such as quantization noise, this assumption is not
adequate for many real world wireless networks. Even if all the estimators
are consistent or strongly consistent,4 larger estimation inaccuracies in steps
2 and 5 of the above scheme may appear simply by virtue of strongly limited
estimation time. Also the neglect of the background noise in the computation
steps or an erroneous assumption about the noise variance in the adjoint net-
work may result in biased estimates. Indeed, since information conveyed over
the adjoint network is contained in the average received power, the gradi-
ent estimates will converge (say in probability if the estimator is consistent)
to the true value plus the noise variance when the background noise is ne-
glected and independent of the estimator and the received signal. Clearly, in
such a case, the algorithm will not converge to the optimum even under the
assumption of perfect estimation.

In the case of such uncertainties, the proposed algorithm has to be ana-
lyzed in a more general context of stochastic approximation theory. The topic
is too broad to be considered here in more detail. Moreover, it requires math-
ematical tools and concepts that are different from those used so far in this
book. For these reasons, we only mention some basic ideas from this theory.
Reference [55] provides a preliminary analysis of the above scheme in this
context. A comprehensive reference for stochastic approximation algorithms
is [92]. The reader is also referred to [93, 94, 95, 83].

For simplicity, the uncertainty of the estimation of SIRs in step 2) in the
above procedure is neglected. So, we focus on the problem of estimating the
gradient components in step 5) which are assumed to be random variables of
the form

∆k(n) = ∇kFe(s(n)) + Mk(n), k ∈ K, n ∈ N0 .

In general, the estimation noise processes {Mk(n)}, k ∈ K, are dependent on
the estimator type, the estimation time, and the receiver noise process. In the
literature, the following assumptions are often made to simplify the analysis.

A1 The receiver noise processes are martingale-differences uncorrelated with
transmit symbols [96, 92] and have variances σ2

k < ∞. In particular, this
includes additive white Gaussian noise.

A2 The estimation noise is zero-mean and exogenous, in that its future evolu-
tion, given the past history of the iterates and the receiver noise, depends
only on the noise.

4 An estimator is said to be consistent if the estimate converges in probability
to the quantity being estimated as the estimation time grows. It is said to be
strongly consistent if the estimate converges to the true value almost surely [91]
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Note that while A1 is not restrictive, A2 is not necessarily fulfilled by the
scheme. For instance, if an erroneous assumption about the receiver noise
variance is made, the estimates of ∇Fe(s(n)) may be biased. Also, A2 can be
violated as the evolution of the estimation noise may depend on the iterate.
This is simply because the transmit power in the adjoint network (and thus
also the estimation accuracy in case of a limited estimation time) depends
on s(n). This dependency can be reduced by extending the estimation time
of each ∆k(n), k ∈ K, n ∈ N0.

In what follows, we assume that the two assumptions are satisfied. So, for
each k ∈ K, we can write

Mk(n + 1) = ∆k(n + 1) − E
[
∆k(n + 1)|s(0), ∆k(m), m ≤ n

]
where we have E[∆k(n + 1)|s(0), ∆k(m), m ≤ n] = ∇kFe(s(n)) and ∆k(n) =∑n−1

m=0 Mk(m). In words, the estimation noise process {Mk(n)}, k ∈ K, is
a martingale-difference independent of transmit symbols and with finite
variance. Moreover, {∆k(n)}, k ∈ K, is a martingale sequence. Recall that
X(n) = Y (n + 1) − Y (n) is said to be a martingale difference if the process
{Y (n)} (a sequence of random variables) is martingale, that is to say, if
E[Y (n + 1)|Y (i), i ≤ n] = Y (n) with probability one for all n [96, 92]. Thus,
the expectation of X(n) conditioned on the past is zero. Moreover, since
the variance is finite, the martingale differences are uncorrelated in that for
m �= n, we have E[Y (n + 1) − Y (n)][Y (m + 1) − Y (m)] = 0.

It can be inferred from the landmark paper [93] that taking many obser-
vations of the noise corrupted gradient samples in each iteration step and
then averaging them to obtain a good estimate of the gradient vector is in
general inefficient. Instead, they proposed considering a diminishing step size
δ(n). So, in case of noisy measurements, the power control algorithm (6.19)
usually takes the form

s(n + 1) = ΠS

[
s(n) − δ(n)∆(n)

]
, s(0) ∈ S (6.33)

where ∆(n) = (∆1(n), . . . , ∆K(n)) is the vector of noisy measurements of
the gradient in the nth iteration and {δ(n)} is a non-increasing sequence
of positive real numbers satisfying

∑∞
n=0 δ(n) = ∞, limn→∞ δ(n) = 0 and

ε ≤ δ(n) ≤ M − ε for all n ∈ N0 and some ε > 0, where M denotes a
Lipschitz constant (see Section 6.4.1). The choice of the step size sequence
{δ(n)} is central to the effectiveness of the algorithm (6.33). A typical choice
of the step size satisfies

∑∞
n=1 δ2(n) < ∞. However, this condition can often

be weakened considerably [92, 94]. A standard example of a step size that
satisfy the above conditions is δ(n) = C/(n + 1) for some sufficiently small
C > 0.

Under the assumptions A1-2, some standard results can be exploited to
deduce convergence of the power control algorithm (6.33) to a stationary
point of the problem. Usually, two types of convergence are of interest: con-
vergence in distribution (or weak convergence) or almost sure convergence
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[92, 96]. Convergence in the mean square sense was considered in [83]. For
instance, with A1-2, it follows from [92] that the algorithm converges weakly
to a stationary point if δ(n) = c n−µ for some sufficiently small c > 0 and
µ ∈ (0, 1]. Almost sure convergence of the algorithm follows from [94, 92]
when the noise process is subject to some additional constraints. In [92], the
reader can find further useful results for correlated and/or non-exogenous
(state dependent) noise processes. Finally, in [95], methods for averaging the
iterates (in parallel to the stochastic recursion (6.33)) are presented to im-
prove the convergence rate of the algorithm. In [55], it is shown that the
averaging scheme of [95] significantly decreases the variance of the conver-
gence curve of the algorithm (6.33) for reasonable SIR values.



Part III

Appendices



A

Some Concepts and Results from Matrix

Analysis

The appendix provides some (very) basic concepts and results from linear
algebra that are vital to understanding the theory presented in this book.
This is also a good opportunity to introduce the notation used throughout
the book. Proofs are provided only for the most important results such as the
Perron–Frobenius theorem. For other proofs and a detailed treatment of this
material, the reader is referred to any linear algebra book and [5, 3, 7, 2, 12, 4].

A.1 Vectors and Vector Norms

Vectors and matrices can be defined over an arbitrary field K. It could be
R, the field of real numbers, or C, the field of complex numbers. These are
the most common choices. Unless something otherwise stated, all matrices in
this section are over K = R. Elements of K are called scalars.

The set of all n-tuples over R with two algebraic operations called vec-
tor addition and scalar multiplication form an n-dimensional vector space
denoted by Rn. Elements of Rn are referred to as vectors and are written
as u = (u1, . . . , un), which, in connection with vectors or matrices, should
be regarded as a column vector. In the book, we use the following notation:
0 = (0, . . . , 0) is the zero vector, 1 = (1, . . . , 1) is the vector of ones, and
ei = (0, . . . , 0, 1, 0, . . . , 0) is a unit vector with 1 in the ith position and zeros
elsewhere.

Throughout the book, we use partial ordering on Rn defined as follows:
For any u,v ∈ Rn, there holds

u ≤ v ⇔ ∀1≤i≤n ui ≤ vi u < v ⇔ ∀1≤i≤n ui < vi

u = v ⇔ ∀1≤i≤n ui = vi .

When ∀1≤i≤n ui ≥ c for some constant c, we write u ≥ c with equality if and
only if ui = c for each 1 ≤ i ≤ n. So we have v ≥ u if and only if s = v−u ≥ 0
and v > u if and only if s = v − u > 0 where s ∈ R

n. Moreover, if u ≤ v
and v ≤ s for any u,v, s ∈ Rn, then u ≤ s.

S. Stańczak et al.: Resource Allocation in Wireless Networks, LNCS 4000, pp. 155–170, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We say that Rn is a normed vector space if there is a map ‖ · ‖ : Rn → R

(called a norm on Rn) satisfying the following properties:

∀u∈Rn‖u‖ ≥ 0 ∀λ∈R,u∈Rn ‖λu‖ = |λ| · ‖u‖
‖u‖ = 0 ⇔ u = 0 ∀u,v∈Rn‖u + v‖ ≤ ‖u‖ + ‖v‖ .

(A.1)

All the norms used in this book are lp-norms and the maximum norm: For
any p ≥ 1, the lp-norm and the maximum norm of u ∈ Rn are defined to be

‖u‖p =
( n∑

i=1

|ui|p
) 1

p

and ‖u‖∞ = max(|u1|, . . . , |un|)

respectively. A vector space equipped with a lp-norm is called the lp space.
Minkowski’s inequality establishes that the lp spaces are normed vector
spaces.

Theorem A.1 (Minkowski’s Inequality). For 1 ≤ p ≤ ∞,

‖u + v‖p ≤ ‖u‖p + ‖v‖p . (A.2)

The lp spaces are also metric spaces with the distance d(u,v) from u ∈ Rn to
v ∈ Rn given by d(u,v) = ‖u−v‖ for some lp-norm on Rn. The vector space
Rn becomes an inner product space if it is equipped with the inner product
defined as

〈u,v〉 =
n∑

i=1

ui vi, u,v ∈ R
n .

Hölder’s inequality provides a relationship between the inner product of two
vectors and their norms. The following theorem presents Hölder’s inequal-
ity for nonnegative vectors. Hölder’s inequalities for general complex vectors
(along with the equality conditions) can be found in [97, pp. 50-54].

Theorem A.2 (Hölder’s Inequality). Let u ∈ Rn
+ and v ∈ Rn

+ be arbi-
trary. Then, there holds

〈u,v〉 ≤ ‖u‖p‖v‖q (A.3)

where p, q > 1 are chosen so that 1/p+ 1/q = 1. Equality holds if and only if
vk = c up−1

k , 1 ≤ k ≤ K, for some constant c > 0.

When p = 2, R
n is called Euclidean space with the Euclidean distance

d(u,v) = ‖u − v‖2 and the Euclidean norm ‖u‖2 =
√〈u,u〉. The Euclid-

ean space Rn is a Hilbert space since it is complete with respect to its norm
induced by the inner product. When p = q = 2, the general form of the
inequality (A.3) is better known as the Cauchy–Schwarz inequality:

|〈u,v〉| ≤ ‖u‖2‖v‖2 (A.4)

for all u,v ∈ Rn, with equality if and only if u = cv for some constant c �= 0.
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A.2 Matrices and Matrix Norms

If n, m ≥ 1, a matrix X of size n × m with entries in K is an array with n
rows and m columns:

X =

⎛
⎜⎝x1,1 · · · x1,m

...
. . .

...
xn,1 · · · xn,m

⎞
⎟⎠ .

We write X = (xi,j)1≤i≤n,1≤j≤m or simply X = (xi,j) if the matrix size
is clear. The entries of X are also denoted by (X)i,j . If m = n, the
matrix X is said to be square. A n × n diagonal matrix X denoted by
X = diag(x) = diag(x1, . . . , xn) is a matrix with diagonal entries x1, . . . , xn

and all off-diagonal entries being equal to zero. In particular, I = diag(1) =
diag(1, . . . , 1) is referred as the identity matrix or, simply, the identity.

The set of all n × m matrices over R form a vector space denoted by
Rn×m. As in the case of vectors, we define a partial ordering on Rn×m as
follows: For any A ∈ Rn×m and B ∈ Rn×m,

A ≤ B ⇔ ∀i,j ai,j ≤ bi,j A < B ⇔ ∀i,j ai,j < bi,j

A = B ⇔ ∀i,j ai,j = bi,j .

Again, if ∀i,jai,j ≥ c for some constant c, we write A ≥ c. For any two
matrices A,B ∈ Rn×m, their Hadamard product A ◦ B is the entry-wise
product of A and B. When considered in connection with matrices, vectors
are to be regarded as column vectors.

Given a matrix X ∈ Rn×m, a matrix norm of X is denoted by ‖X‖. Gen-
eral matrix norms satisfy the conditions in (A.1), with the vector u replaced
by some matrix. Additionally, if AB exists, we have

‖AB‖ ≤ ‖A‖‖B‖ .

The simplest notion of a matrix norm of X ∈ Rn×m is the Frobenius norm
given by

‖X‖2
F =
∑
i,j

|xi,j |2 = trace(XT X) (A.5)

where trace(X) =
∑

i xi,i is the trace of a matrix X. Other widely used
matrix norms are induced matrix norms: For any X ∈ Rn×m, define

‖X‖ = max
u∈R

m,‖u‖=1
‖Xu‖ (A.6)

where ‖ · ‖ denotes any vector norm satisfying (A.1). If the l2-norm is used,
then ‖X‖2 is the matrix 2-norm equal to

√
λmax where λmax is the largest

eigenvalue of XT X (see below) and XT is the transpose of X defined as
follows.
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Definition A.3 (Matrix Transpose). The transpose matrix of X = (xi,j)
∈ Rn×m is defined as a matrix XT ∈ Rm×n such that (XT )i,j = xj,i.

Furthermore, we have

‖X‖1 = max
‖u‖1=1

‖Xu‖1 = max
j

n∑
i=1

|xi,j |

‖X‖∞ = max
‖u‖∞=1

‖Xu‖∞ = max
i

m∑
j=1

|xi,j | .
(A.7)

Finally, we point out that every matrix X ∈ Rn×m can be considered as a
linear map from Rm into Rn. Recall that a map f : Rm → Rn is said to be
linear if f(u+v) = f(u)+ f(v) and f(au) = a f(u) for every u,v ∈ R

m and
a ∈ R. We write Rm → Rn : u → Xu = v. The image of u under X is the
vector v. The image of Rm under X is called the range of X. The kernel of
X is the set ker(X) of those u ∈ Rm for which Xu = 0.

A.3 Square Matrices and Eigenvalues

From now on we focus on square matrices of size n × n over R.

Definition A.4 (Eigenvalues and Eigenvectors). For an arbitrary n×n
matrix X, scalars λ ∈ C and n-vectors p �= 0 (with p ∈ Cn) satisfying λp =
Xp (over C) are called eigenvalues and right eigenvectors of X, respectively.
The pair (λ,p) is an eigenpair of X or, equivalently, p is an eigenvector of
X associated with an eigenvalue λ. A left eigenvector q �= 0 of X associated
with λ is a n-vector satisfying λq = XT q.

It is important to emphasize that even if X is a real-valued matrix, its eigen-
values are in general complex numbers. It is easy to see that eigenvalues of
X are exactly those scalars λ ∈ C for which both of the following hold:

(i) the matrix A = λI − X is singular, that is, A is not invertible. This
means that there is no matrix A−1 ∈ Rn×n such that AA−1 = A−1A =
I.

(ii) p(λ) = det(λI − X) = 0 in C where det(A) denotes determinant of A.

Recall that

det(A) =
∑

σ

ε(σ)
n∏

j=1

a1,σj

where the sum is taken over all permutations σ = (σ1, . . . , σn) of (1, 2, . . . , n)
and ε(σ) = ±1 is equal to 1 if σ is the product of an even number of trans-
positions, and −1 otherwise.

The polynomial p(λ) is called the characteristic polynomial of X. Hence
the second statement says that the eigenvalues of X are the roots of its
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characteristic polynomial in the field of complex numbers. As the order of
the polynomial is n, we see that X ∈ Rn×n has altogether n eigenvalues.
Some of these eigenvalues, however, can be repeated.

Definition A.5 (Algebraic and Geometric Multiplicity). The multi-
plicity of λ as a root of the characteristic polynomial is called algebraic mul-
tiplicity of the eigenvalue λ. The geometric multiplicity of λ is the dimension
of ker(λI − X) in Rn.

The geometric multiplicity is smaller than or equal to the algebraic multi-
plicity. Eigenvalues with algebraic multiplicity 1 are called simple.

The following fundamental result is invoked throughout the book when-
ever we say that the eigenvalues of a matrix are continuous functions of its
entries [5].

Theorem A.6. Let X ∈ R
n×n be arbitrary, and let us fix some norm on

Rn. Suppose that λ ∈ C is any eigenvalue of X, with multiplicity µ, and d
is the distance from λ to the other eigenvalues of X. Let Bρ(λ) be an open
disk of radius ρ with 0 < ρ < d centered at λ. Then, there exists ε > 0 such
that if A ∈ Rn and ‖A‖ < ε, the sum of the algebraic multiplicities of the
eigenvalues of X + A in Bρ(λ) is equal to µ.

For a definition of an open disk, the reader is referred to Sect. B.1.

A.3.1 Spectral Radius and Neumann Series

First let us define the matrix spectrum.

Definition A.7 (Matrix Spectrum). The set of distinct eigenvalues of X
is referred to as the spectrum of X and is denoted by σ(X).

Since the roots of a polynomial with real coefficients occur in conjugate pairs,
λ ∈ σ(X) implies that λ ∈ σ(X) where x denotes the conjugate complex.
Furthermore, we have σ(X) = σ(XT ).

Definition A.8 (Spectral Radius). For any square matrix X ∈ R
n×n, we

define ρ : Rn×n → R as

ρ(X) = max{|λ| : λ ∈ σ(X)} . (A.8)

The real number ρ(X) is called the spectral radius of X.

Thus, in order to obtain an upper bound on the magnitudes of all eigenvalues
of X, it is sufficient to bound above the spectral radius. A crude upper bound
is given by the following observation

Observation A.9. For any matrix norm and X ∈ Rn×n, there holds

ρ(X) ≤ ‖X‖ (A.9)
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Proof. Suppose that (λ,p) with p �= 0 is any eigenpair of X. Let ‖ · ‖ be any
matrix norm, and let P ∈ Rn×n be a matrix all of whose columns are equal
to p. Then, |λ|‖P‖ = ‖λP‖ = ‖XP‖ ≤ ‖X‖‖P‖. Hence, |λ| ≤ ρ(X) ≤ ‖X‖
for any matrix norm.

In particular, the observation implies that ρ(X) = ρ(Xk)1/k ≤ ‖Xk‖1/k for
any k ≥ 1. This and the equivalence of the norms in finite dimensional spaces
are key ingredients in proving the following result.

Theorem A.10. Let X ∈ Rn×n be arbitrary. Then,

ρ(X) = lim
k→∞

‖Xk‖1/k (A.10)

for every matrix norm ‖ · ‖.
Given any X ∈ R

n×n, the convergence of the Neumann series
∑∞

k=0 Xk is
fundamental for some of the concepts introduced in this book. The following
result provides a necessary and sufficient condition for the Neumann series
to converge

Theorem A.11. Let X ∈ Rn×n be arbitrary. Then, the following statements
are equivalent.

(i)
∑∞

k=0 Xk converges.
(ii) ρ(X) < 1.
(iii) limk→∞ Xk = 0.

In these cases, (I − X)−1 exists, and (I − X)−1 =
∑∞

k=0 Xk.

A.3.2 Orthogonal, Symmetric and Positive Semidefinite Matrices

A matrix X ∈ Rn×n is said to be normal if X commutes with XT . In other
words, if X is normal, then XXT = XT X. Important subsets of normal
matrices are the sets of orthogonal and symmetric matrices.

Definition A.12 (Orthogonal and Symmetric Matrices). We say that
X ∈ R

n×n is an orthogonal matrix if XT X = XXT = I. It is said to be
symmetric if XT = X.

If X is orthogonal and p �= 0 is an eigenvector of X associated with λ ∈ σ(X),
then |λ|2‖p‖2

2 = (λp)T (λp) = pT XT Xp = ‖p‖2
2. Hence, the eigenvalues of

any orthogonal matrix are (in general) complex numbers of modulus one. For
symmetric matrices, we have the following standard results.

Theorem A.13. The eigenvalues of symmetric matrices are real.

Theorem A.14. Symmetric matrices are orthogonally similar to a diagonal
matrix. In other words, given a symmetric matrix X, there exists an orthog-
onal matrix U such that UXUT is diagonal.
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Theorem A.15. Let X̂, X̌ be arbitrary symmetric matrices, and let X(µ) =
(1 − µ)X̂ + µX̌ for µ ∈ [0, 1]. Then,

ρ(X(µ)) ≤ (1 − µ)ρ(X̂) + µρ(X̌) (A.11)

for all µ ∈ (0, 1).

In words, the theorem says that the spectral radius is convex on the set of
symmetric matrices (for the definition of convexity, the reader is referred to
Appendix B). This immediately becomes obvious when one considers that

ρ(X) = sup{uT Xu : uT u = 1,X = XT } .

Another fundamental notion in matrix analysis is that of positive semidefi-
niteness.

Definition A.16 (Positive Semidefinite Matrix). We say that a sym-
metric matrix X ∈ Rn×n is positive semidefinite if uT Xu ≥ 0 for all u ∈ Rn.
If there is strict inequality for all u ∈ Rn, then X is said to be positive defi-
nite.

Clearly, every symmetric positive semidefinite matrix is orthogonally similar
to a diagonal matrix and all its eigenvalues are real. In addition, however, all
eigenvalues are nonnegative.

Theorem A.17. A symmetric matrix X ∈ Rn×n is positive semidefinite if
and only if σ(X) is a subset of the nonnegative reals. It is positive definite if
and only if σ(X) is a subset of the positive reals.

A.4 Perron–Frobenius Theory

In this section, we focus on vectors and n × n matrices defined over R+ ⊂ R

and R++ ⊂ R+, the sets of nonnegative and positive reals, respectively.

Definition A.18. Any square matrix X ∈ Rn×n whose entries are nonneg-
ative (positive) reals is called a nonnegative (positive) matrix. The set of all
n × n nonnegative (positive) matrices is denoted by Nn (Pn).

The following implications can be easily verified.

∀k≥1 X ≥ 0 ⇒ Xk ≥ 0 and X > 0 ⇒ Xk > 0 (A.12)
X > 0,u ≥ 0,u �= 0 ⇒ Xu > 0 (A.13)
X ≥ 0,u > 0,Xu = 0 ⇒ X = 0 . (A.14)

If |X| = (|xi,j |), then we further have |Xm| ≤ |X|m for all m ∈ N and if
0 ≤ A ≤ B, then 0 ≤ Am ≤ Bm. Moreover, if |A| ≤ |B|, then ‖A‖F ≤ ‖B‖F



162 A Some Concepts and Results from Matrix Analysis

where ‖ · ‖F is the Frobenius norm defined by (A.5). Finally, it is clear that
‖X‖F = ‖|X|‖F . Combining these observations yields

‖Am‖1/m
F ≤ ‖|A|m‖1/m

F ≤ ‖Bm‖1/m
F

for all m ∈ N and A,B ∈ Rn×n such that |A| ≤ B. Now if we let m → ∞
and apply Theorem A.10, we obtain the following important result.

Theorem A.19. Let A,B ∈ R
n×n. If |A| ≤ B, then ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Therefore, if X ≥ 0, then the spectral radius ρ(X) is monotonic with respect
to the matrix entries.

An important set of nonnegative matrices is the set of stochastic matrices.

Definition A.20 (Stochastic Matrix). X ∈ Nn is said to be stochastic if

∀1≤i≤n

n∑
j=1

xi,j = 1 .

If both X and XT are stochastic, then X is said to be doubly stochastic.

It is easy to see that for any stochastic matrix X, we have X1 = 1. Further-
more, since ‖Xu‖∞ ≤ ‖X‖∞‖u‖∞ = ‖u‖∞, there holds ρ(X) = 1 in the case
of any stochastic matrix X.

The Perron–Frobenius theory addresses the problem to what extent the
nonnegativity (positivity) property of a matrix is inherited by its eigenvalues
and eigenvectors [2, 3, 4, 12]. Intuitively, it can be expected that the spec-
tral properties (in terms of positivity) somehow depend on the number and
position of positive entries of X. For instance, consider X =

(
0 1
0 0

)
in which

case there is neither a positive eigenvalue (σ(X) = {0}) nor a positive eigen-
vector. In contrast, X =

(
0 1
1 0

)
has significantly stronger properties than the

previous example, although the matrices differ from each other only in one
position. Indeed, the spectrum is now σ(X) = {+1,−1} so that the matrix
has a simple positive eigenvalue λp = ρ(X) = 1. Moreover, (1/

√
2, 1/

√
2) is

a positive right eigenvector associated with λp. It should be emphasized that
these additional properties (a simple positive eigenvalue that equals the spec-
tral radius and an associated positive eigenvector) are not exclusively due to
the increased number of positive entries in X. In fact, what really matters is a
combination of the number of positive entries and their right positions. This
becomes clear after considering the matrix X =

(
1 1
0 0

)
. Despite having the

same number of positive entries as the previous example, it is not possible to
associate a positive eigenvector with λp = ρ(X) = 1. An important difference
between these two matrices is captured by the notion of reducibility.

A.4.1 Perron–Frobenius Theorem for Irreducible Matrices

Definition A.21 (Reducible and irreducible matrices). A nonnegative
matrix X ∈ Nn is said to be reducible if there exists a permutation matrix P
such that
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PT XP =
(
A 0
B C

)
where A and C are both square matrices. Otherwise, X is said to be irre-
ducible. The set of all n × n nonnegative irreducible matrices is denoted by
Xn ⊂ Nn.

The following result used later in the proof of Theorem A.36 is sometimes
stated as the definition of irreducible matrices [2].

Lemma A.22. We have X ∈ Xn if and only if, for each (i, j) with 1 ≤ i, j ≤
n, there exists k ≥ 0 such that x

(k)
i,j := (Xk)i,j > 0.

Irreducibility of X is equivalent to strong connectivity of the graph G(X) of
X ∈ Nn which is defined to be the directed graph of N = {1, . . . , n} nodes in
which there is a directed edge leading from node j ∈ N to i ∈ N if and only if
xi,j > 0. Now we say that G(X) is strongly connected if for each pair of nodes
(i, j) there is a sequence of directed edges leading from i to j. The following
connection between irreducibility and strong connectivity is well known [12].

Observation A.23. X ∈ Xn if and only if G(X) is strongly connected.

This observation is for instance useful to verify the irreducibility property
of relatively small matrices. So it may be easily seen that X =

(
0 1
1 0

)
is

irreducible, whereas the other two examples above are not.
The following lemma (which is directly connected to the previous one)

shows that irreducible matrices can be easily converted into positive ones.
The proof can be found in many textbooks (see references at the beginning
of this appendix).

Lemma A.24. If X ∈ Xn, then (I + X)n−1 > 0.

Now we use this result to prove the Perron–Frobenius theorem which is of
central importance for the theory presented in this book.

Theorem A.25 (Perron–Frobenius Theorem). Let X ∈ Xn. Then, there
exists an eigenvalue λp ∈ σ(X) such that

(i) λp = ρ(X) > 0, and hence λp ≥ |λ| for any eigenvalue λ �= λp,
(ii) strictly positive left and right eigenvectors can be associated with λp,
(iii) the eigenvectors associated with λp are unique up to constant multiples,
(iv) λp is a simple root of the characteristic equation of X.

Proof. Let s ∈ Rn
+ with s �= 0, and let

λp(s) := min
i

(Xs)i

si

where the ratio is assumed to be +∞ if si = 0. It is clear that 0 ≤ λp(s) < +∞
for all s ≥ 0, s �= 0. Moreover, it follows that λp(s)si ≤ (Xs)i for all 1 ≤ i ≤ n.



164 A Some Concepts and Results from Matrix Analysis

Therefore, λp(s)s ≤ Xs, from which we obtain λp(s) ≤ 1T Xs/1T s ≤ ‖X‖1.
In words, λp(s) is uniformly bounded above for all s ≥ 0 with s �= 0. Since
λp(1) > 0, this implies that

λp = sup
s∈R

n
+

s �=0

min
i

(Xs)i

si
(A.15)

satisfies 0 < λp(1) ≤ λp ≤ ‖X‖1 < +∞. Furthermore, as λp(αs) = λp(s) for
all α > 0, one has

λp = sup
s∈C

min
i

(Xs)i

si

where C = {s ∈ Rn
+ : sT s = 1} ⊂ Rn. Hence, λp is attained for some

vector p ∈ Rn
+. In other words, there must exist p ∈ Rn

+ with p �= 0 such
that λp = mini(Xp)i/pi. From this it follows that ∀1≤i≤n(Xp)i ≥ λppi with
equality for some i. Thus, u = Xp − λpp ∈ Rn

+. Suppose that u ≥ 0,u �= 0.
Then, by Lemma A.24 and (A.13),

(I + X)n−1u = (I + X)n−1
(
Xp − λpp

)
> 0 ⇒ Xy − λpy > 0

where y = (I + X)n−1p. So the last inequality yields

∀1≤i≤n λp <
(Xy)i

yi
.

But this contradicts (A.15), and therefore u = 0 or, equivalently, Xp = λpp.
This implies that λp is a real-valued eigenvalue of X. Now we show that
λp ≥ |λ| for all λ ∈ σ(X). Let λs = Xs, s �= 0. Taking the modulus of both
sides yields |λ||s| ≤ X|s| where |s| = (|s1|, . . . , |sn|). Therefore, by (A.15),

|λ| ≤ min
1≤i≤n

(X|s|)i

|si| ≤ λp .

This completes the proof of (i).
(ii) Multiplying Xp = λpp by (I + X)n−1 > 0 gives (I + X)n−1Xp =

X(I + X)n−1p = Xy = λpy. Therefore, by (A.13), a right eigenvector of X
associated with λp is positive. Obviously, X ∈ Xn if and only if XT ∈ Xn so
that the proof of (i) can be applied to XT . In particular, since σ(X) = σ(XT ),
there must exist q ∈ Rn

+,q �= 0, such that λpq = XT q with λp ≥ |λ| for all
λ ∈ σ(XT ). Finally, proceeding as above shows that it is possible to associate
with λp a positive left eigenvector.

(iii) Assume that the claim is not true, and let s > 0 and u > 0 be two
linearly independent right eigenvectors of X associated with λp. Then, there
must exist constants α and β such that p = αs+βu ≥ 0 has at least one zero
coordinate and p �= 0 is a right eigenvector of X associated with λp. However,
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this contradicts p > 0, so p must be unique up to constant multiples. The
same reasoning applies to q.

(iv) Let A(λ) ∈ Rn×n with λ ∈ R be the adjugate matrix of the char-
acteristic matrix (λI − X). So we have A(λ) = (ai,j(λ)) = p(λ)(λI − X)−1

where p(λ) is the characteristic polynomial of the matrix X. Furthermore,
the derivative of p(λ) is p′(λ) =

∑n
j=1 aj,j(λ). We are going to show that

p′(λp) �= 0. Due to (ii) and (iii), λp has a unique (up to constant multiples)
positive right eigenvector p > 0. Therefore, A(λp) �= 0 and each column of
A(λp) is either the zero vector or a vector of all whose elements are nonzero
and have the same sign. Considering the transpose XT shows that the same
applies to the rows of A(λp). Thus, since A(λp) �= 0, it follows that all entries
of A(λp) are non-zero and have the same sign as, say s �= 0. This implies that
s · p′(λp) = s

∑n
j=1 aj,j(λp) > 0. So p′(λp) �= 0, and therefore λp is a simple

root of p(λp) = 0 or, equivalently, a simple eigenvalue of X.

In fact, in the above proof, p(λ) is increasing for all λ ≤ λp since λp is the
largest root of p(λ) = 0 over R. Hence, we have p′(λp) > 0.

Definition A.26. λp = ρ(X) > 0 of Theorem A.25 is called the Perron root
of X ∈ XK . The unique vector p defined by

Xp = λpp p ∈ R
n
++ ‖p‖1 = 1 (A.16)

is referred to as the right Perron eigenvector of X. If X is replaced by XT in
(A.16), then p is called the left Perron eigenvector of X.

The proof of (i) in Theorem A.25 gives rise to the so-called Collatz–Wielandt
formula for the Perron root of irreducible matrices.

Theorem A.27 (Collatz–Wielandt Formula). For every X ∈ Xn, there
holds

λp = ρ(X) = max
s∈Rn

++

min
1≤i≤n

(Xs)i

si
= min

s∈Rn
++

max
1≤i≤n

(Xs)i

si
. (A.17)

The maximum is attained if and only if s is a positive right eigenvector of X
associated with ρ(X).

The proof of the min-max characterization in (A.17) proceeds along similar
lines as the proof of the max-min part in Theorem A.25.

A.4.2 Perron–Frobenius Theorem for Primitive Matrices

A set of primitive matrices constitutes an important subset of irreducible
matrices.

Definition A.28 (Primitive Matrices). A nonnegative matrix X ∈ Nn is
said to be primitive if there exists k ≥ 1 such that Xk > 0.
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Comparing this definition with Lemma A.22 and Lemma A.24 reveals that
every primitive matrix is irreducible. The converse however does not need to
hold. Furthermore, a primitive matrix does not need to be positive, although
every positive matrix is primitive. For example, X =

(
1 1
1 0

)
is primitive since

X2 =
(

2 1
1 1

)
. For primitive matrices, there is a somewhat stronger version of

the Perron–Frobenius theorem. Since the primitivity is not necessary for the
results presented in the book, we omit the proof.

Theorem A.29 (Perron Theorem). Let X ∈ Nn be primitive. Then, there
exists an eigenvalue λp ∈ σ(X) such that

(i) λp = ρ(X) > 0 and λp > |λ| for any eigenvalue λ �= λp,
(ii) positive left and right eigenvectors can be associated with λp,
(iii) the eigenvectors associated with λp are unique up to constant multiples,
(iv) λp is a simple root of the characteristic equation of X.

As any primitive matrix is irreducible, (ii)–(iv) follow from Theorem A.25.
Moreover, we have λp = ρ(X) > 0. So, the only difference from irreducible
matrices is that λp > |λ| for any λ ∈ σ(X) with λ �= λp. In other words, the
Perron root of any primitive matrix is the only eigenvalue on the boundary
of a disk centered at zero and with radius ρ(X), and therefore all other
eigenvalues are interior points of the disk.

A.4.3 Some Remarks on Reducible Matrices

The following result, which is sometimes referred to as the weak form of the
Perron–Frobenius theorem [5], shows that some of the spectral properties of
irreducible matrices carry over to general nonnegative matrices.

Theorem A.30 (Weak Form of the Perron–Frobenius Theorem). If
X ∈ Nn, then λp = ρ(X) is an eigenvalue of X associated with a nonnegative
eigenvector p �= 0.

Note that except for the nonnegativity property, there are no additional con-
straints on X.

Proof. It is clear that any nonnegative matrix X can be written as a limit
value of a sequence of positive matrices {X(k)}: X = limk→∞ X(k) with
X(k) > 0, k = 1, 2, . . . . Let λ

(k)
p = ρ(X(k)) ∈ σ(X(k)) for every X(k) > 0. By

the limit above, λp = limk→∞ λ
(k)
p exists and λp is a real-valued eigenvalue of

X. Furthermore, since λ
(k)
p > |λ(k)| ≥ 0 for every λ(k) ∈ σ(X(k)) and k ≥ 1,

it follows from the limit and the continuity of the eigenvalues (Theorem A.6)
that λp ≥ |λ| ≥ 0, λ ∈ σ(X). Therefore, λp = ρ(X) ∈ σ(X). The same
limit implies that an associated eigenvector p is nonnegative. Moreover, it is
possible to choose a subsequence of eigenvectors of X(k) associated with λ

(k)
p

such that its limit p �= 0. Thus, λpp = Xp with p �= 0.
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The eigenvalue λp = ρ(X) can be expressed in terms of the Perron roots
of block-diagonal irreducible submatrices of X. Indeed, if X is reducible, it
follows from Definition A.21 that there exists a permutation matrix P such
that

PT XP =

⎛
⎜⎜⎝

X(1) 0 · · · 0
X(2,1) X(2) . . . 0
· · · · · · · · · · · ·

X(s,1) X(s,2) . . . X(s)

⎞
⎟⎟⎠ (A.18)

where X(1), . . . ,X(s) are irreducible (square) matrices. From this, we see that
the spectral radius ρ(X) is given by [4]

ρ(X) = max{ρ(X(i)) : i = 1, 2, . . . , s} (A.19)

where X(i), 1 ≤ i ≤ s, is the ith irreducible block of X and ρ(X(i)) its Perron
root. The following definition is needed to formulate a necessary and sufficient
condition for the existence of a positive right eigenvector of X.

Definition A.31 (Maximal and Isolated Diagonal Blocks). In the ma-
trix (A.18), we say that the ith diagonal block X(i) is

(i) maximal if ρ(X(i)) = ρ(X), and
(ii) isolated if X(i,j) = 0 for each 1 ≤ j < i.

Now we are in a position to state the following result [4].

Theorem A.32. Suppose that I ⊆ {1, . . . , s} and M ⊆ {1, . . . , s} are the sets
of indices corresponding to isolated and maximal diagonal blocks, respectively.
Then, there exists a vector p > 0 with ρ(X)p = Xp if and only if I = M.

In words, the theorem says that there exists a positive right eigenvector of X
associated with ρ(X) if and only if every isolated block is maximal and there
are no other maximal diagonal blocks. However, it is important to emphasize
that this is not sufficient for the matrix X to have positive left and right
eigenvectors associated with ρ(X). In order to completely identify the set of
nonnegative matrices for which there exist positive left and right eigenvectors
associated with ρ(X), we consider the following definition.

Definition A.33 (Block Irreducibility). We say that X ∈ Nn is block-
irreducible if there exists a permutation matrix P such that

PT XP =

⎛
⎜⎜⎜⎜⎝

X(1) 0 · · · 0

0 X(2) . . .
...

...
... · · · 0

0 0 · · · X(s)

⎞
⎟⎟⎟⎟⎠ (A.20)

where all X(1), . . . ,X(s) are square nonnegative irreducible matrices.
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In other words, X is block-irreducible if every diagonal block in the matrix
(A.18) is isolated. In the case of block-irreducible matrices, we can further
strengthen the weak form of the Perron–Frobenius theorem [4].

Theorem A.34. Let X ∈ Nn be arbitrary, and let λp = ρ(X). The eigenvalue
λp can be associated with positive left and right eigenvectors if and only if X
is block-irreducible and every diagonal block is maximal.

A.4.4 The Existence of a Positive Solution p to (αI − X)p = b

Chapter 2 deals with a positive solution to a system of linear equations with
nonnegative coefficients. This section provides two well-known results on the
existence of such a solution [2].

Theorem A.35. Let X ∈ Nn be arbitrary, and let α > 0 be any scalar. A
necessary and sufficient condition for a solution p ≥ 0,p �= 0, to

(αI − X)p = b (A.21)

to exist for any b > 0 is that α > r = ρ(X). In this case, there is only one
solution p, which is strictly positive and given by p = (αI − X)−1b.

We emphasize that in the setup of the theorem, X �= 0 is an arbitrary non-
negative matrix. Instead, the vector b is required to be positive.

Proof. Assume that p ≥ 0 exists. Since b > 0, it follows from αp = Xp + b
that Xp < αp. Clearly, as Xp ≥ 0, this can hold only if α > 0 and p > 0.
Now let q ≥ 0,q �= 0, be a left eigenvector of X associated with r. By
Theorem A.30, such an eigenvector exists. Hence, qT Xp = rqT p < αqT p,
from which it follows that r < α since p > 0 and q �= 0, and therefore
qT p > 0.

Now assume that α > r = ρ(X). By Theorem A.11, the following Neu-
mann series converges (αI−X)−1 = α−1(I−α−1X)−1 = α−1

∑∞
l=0(α

−1X)l.
By nonnegativity of X, there holds (αI − X)−1 ≥ 0. Furthermore, since
(α−1X)0 = I, each row of (αI−X)−1 has at least one positive entry. Hence,
since b > 0, we must have (αI − X)−1b > 0 for any b > 0. Putting
p = (αI − X)−1b > 0 yields the sought vector.

A combination of positivity of b and nonnegativity of X guarantees the ex-
istence of a positive solution p to (A.21), provided that ρ(X) < α. It is clear
that if b is an arbitrary nonnegative vector (not necessarily positive) and
ρ(X) < α, then the solution p ≥ 0 with p = (αI − X)−1b exists but does
not need to be positive. If b is an arbitrary nonnegative vector, the following
result shows that the positivity of p is recovered when X ∈ Nn is irreducible.

Theorem A.36. Let α > 0 be any scalar, and let X ∈ Nn be irreducible. A
necessary and sufficient condition for a solution p ≥ 0,p �= 0 to
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(αI − X)p = b

to exist for any b ≥ 0,b �= 0, is that α > r = ρ(X). In this case, there is
only one solution p, which is strictly positive and given by p = (αI−X)−1b.

First we prove the following lemma.

Lemma A.37. Let X ≥ 0 be irreducible, α > 0, and y ≥ 0,y �= 0, a vector
satisfying

Xy ≤ αy . (A.22)

Then y > 0 and α ≥ r = ρ(X) where r is the Perron root of X. Moreover,
α = r if and only if Xy = α y.

Proof. First suppose that y is not positive and yi = 0 for some fixed 1 ≤ i ≤
n. By (A.22), Xky ≤ αky, and therefore

∑n
j=1 x

(k)
i,j yj ≤ αk yi. As X ≥ 0 is

irreducible, we know from Lemma A.22 that, for each 1 ≤ j ≤ n, there is a
natural number k such that x

(k)
i,j > 0. Thus, since yj > 0 for some j, there

holds x
(k)
i,j yj > 0 for some k ≥ 1 and j. This in turn implies yi > 0, thereby

contradicting the assumption yi = 0. As a consequence, we must have y > 0.
Now letting q be any positive left eigenvector of X yields αqT y ≥ qT Xy =
rqT y. From this, we have α ≥ r since qT y > 0.

Now suppose that Xy ≤ ry with strict inequality in at least one place.
Then, qT Xy = rqT y < rqT y. So r < r, which does not make sense, and
therefore we must have Xy = αy if α = r. Proceeding in a similar way shows
that α = r implies Xy = αy.

Now we are in a position to prove Theorem A.36.

Proof. First assume that p ≥ 0,p �= 0, exists. Since b ≥ 0,b �= 0, and
b + Xp = αp, we have Xp ≤ αp with at least one inequality. Of course,
this can be satisfied only if α > 0. Moreover, by Lemma A.37, we have
α > r = ρ(X) > 0.

Conversely, if α > r = ρ(X), then the Neumann series converges (αI −
X)−1 = α−1

∑∞
l=0(α

−1X)l. Furthermore, as X is irreducible, Lemma A.22
implies that (αI−X)−1 > 0. Therefore, by (A.13), (αI−X)−1b > 0 for any
b ≥ 0 with b �= 0. Defining p = (I − X)−1b > 0 completes the proof.

Finally we point out a well-known connection to M-matrices.

Definition A.38. A real nonsingular matrix is said to be an M-matrix if all
off-diagonal entries are non-positive and its inverse is a nonnegative matrix.

Theorem A.39. Let A ∈ Rn×n be any nonsingular matrix with non-positive
off-diagonal entries. The following statements are equivalent.

(i) A is an M-matrix.
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(ii) There is a matrix X ≥ 0 and a real number α > ρ(X) such that A =
αI − X.

(iii) All principal minors of A are positive.
(iv) Re(λ) > 0 for all λ ∈ σ(A).

In the setup of Theorems A.35 and A.36, there exists a positive solution p
to (αI − X)p = b if and only if ρ(X) < α. On the other hand, by (ii) in the
above theorem, αI − X with X ≥ 0 is an M-matrix if and only if ρ(X) < α.
So we can conclude that a positive solution p exists if and only if αI − X is
an M-matrix.



B

Some Concepts and Results from Convex

Analysis

In this chapter, we collect definitions, notational conventions and several
results from convex analysis that may be helpful in better understanding
the material covered in this manuscript. Proofs are provided only for selected
results concerning the notion of log-convexity and the convergence of gradient
projection algorithms. For other proofs, the reader is referred to any standard
analysis book (e.g., [98]) and [83, 88, 11].

B.1 Sets and Functions

If A is a set, then x ∈ A means that x is a member (or an element) of A. If
x is not a member of A, then we write x /∈ A. The set with no elements is
called empty and is denoted by ∅. For any two sets A and B, A ⊂ B means
that every member of A is a member of B. In such a case, A is said to be a
subset of B. If, in addition, there is an element of B which is not in A, then
A is said to be a proper subset of B. If A ⊂ B and B ⊂ A, we write A = B.
Otherwise, we have A �= B. In the book, we use N and N0 to denote the set
of natural numbers and the set of nonnegative integers.

Now suppose Rn is a metric space. Let ‖ · ‖ : Rn → R be a norm defined
on Rn and d(p,q) = ‖p−q‖ the distance from p ∈ Rn to q ∈ Rn (Appendix
A.1). Let A be some subset of Rn, which is also a metric space equipped with
the same metric. In the definition below, elements of R

n are referred to as
points. These points are vectors if Rn is a vector space. Note that Rn could
be replaced by an arbitrary metric space.

Definition B.1. All points and sets mentioned below are understood to be
elements and subsets of Rn.

(a) An open ball Br(p) of radius r > 0 centered at point p is defined to be

Br(p) := {q ∈ R
n : d(p,q) < r} .

Br(p) is an open interval if n = 1 and an open disk if n = 2.
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(b) A point p is a limit point of the set A if, for all r > 0, Br(p) contains a
point q �= p with q ∈ A.

(c) A is closed if every limit point of A is a point of A.
(d) A point p is an interior point of A if there is r > 0 such that Br(p) ⊂ A.
(e) A is open if every point of A is an interior point of A.
(f) The complement of A (denoted by Ac) in Rn is the set of all points p ∈ Rn

such that p /∈ A.
(g) A is bounded if there is a real number M and a point q ∈ Rn such that

d(p,q) < M for all p ∈ A. Otherwise, it is said to be unbounded.

According to these definitions, R
n is a closed, open and unbounded set.

Throughout the manuscript, for any a < b with a, b ∈ R, [a, b] is called a
closed interval on the real line, [a, b) and (a, b] are half-open intervals, and
(a, b) is an open interval (also referred to as a segment). Now let us introduce
the notion of compactness.

Definition B.2 (Open Cover and Compact Set). An open cover of A
in Rn is a collection {Gα} of open subsets of Rn such that A ⊂ ∪αGα. A
subset A of Rn is said to be compact if every open cover of A contains a
finite subcover. In other words, if {Gα} is an open cover of A, then there are
finitely many indices α1, . . . , αm such that A ⊂ Gα1 ∪ · · · ∪ Gαm .

The Heine–Borel theorem stated below is implicitly invoked in the book when
the existence of maxima or/and minima should be guaranteed (see Theorem
B.8).

Theorem B.3. For a subset A of the Euclidean space Rn, the following are
equivalent.

(i) A is closed and bounded.
(ii) A is compact.

The Euclidean space is defined in Appendix A. It should be emphasized that
(i) and (ii) cease to be equivalent in general metric spaces.

For any function (map) from the set A into the set B, we write f : A → B
or A → B : x → f(x). The set A is called the domain of f , and the elements
f(x) of B are called values of f . The set of all values of f is called the range
of f denoted by f(A) ⊂ B. If f(A) = B, we say that f maps A onto B. If
f(x1) �= f(x2) whenever x1 �= x2, x1 ∈ A, x2 ∈ A, then f is said to be a
one-to-one mapping (function) from A into B.

Definition B.4 (Bijective Function). We say that f is bijective if f :
A → B is a one-to-one map from A onto B (one-to-one and onto).

The notion of bijectivity (specialized to real-valued functions) is used (ex-
plicitly or implicitly) at many points.

Theorem B.5. Let A, B ⊂ R. A function f : A → B is bijective if and
only if there is a function g : B → A such that g(f(x)) = x, x ∈ A, and
f(g(x)) = x, x ∈ B (identity function).
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In what follows, the domain of f is a subset of a metric space Rn denoted
by D. The range of f is the set of all reals R, in which case f is said to
be a real-valued function. The metric on R is simply d(p, q) = |p − q| for all
p, q ∈ R, whereas R

n is a metric space equipped with the metric d : R
n → R+

induced by some norm (see above).

Definition B.6 (Function Limit). Suppose that f : D → R, and p
is a limit point of D. We write f(x) → q as x → p, or, equivalently,
limx→p f(x) = q if there is a point q ∈ R with the following property: For
every ε > 0, there exists δ > 0 such that |f(x) − q| < ε for all x ∈ D with
d(x,p) < δ.

Note that in the definition above, p does not need to be a member of D. So
f does not need to be defined at p.

Definition B.7 (Continuous Function). Suppose that f : D → R, and
p ∈ D. Then, f is said to be continuous at p if for every ε > 0, there exists
δ > 0 such that |f(x) − f(p)| < ε for all points x ∈ D for which d(x,p) < δ.
If f is continuous for all points in D, then f is said to be continuous on D,
or simply continuous.

Theorem B.8. Suppose that f : D → R is continuous and D is a compact
subset of R

n. Let

M = sup
x∈D

f(x) and m = inf
x∈D

f(x) (B.1)

be the least upper bound of all f(x) with x ranging over D and the greatest
lower bound of this set of numbers, respectively. Then, there exist points p,q ∈
D such that f(p) = M and f(q) = m.

In words, the theorem asserts that a continuous function f defined on a com-
pact set D ⊂ Rn attains its minimum and maximum on this set. We point
out that the theorem can be somewhat modified to include upper semicon-
tinuous and lower semicontinuous functions. If Rn is Euclidean space, then,
by Theorem B.3, D in Theorem B.8 is a closed and bounded subset of Rn.

Definition B.9 (Partial Derivatives and Gradient). Let D ⊂ Rn be
an open set, let f : D → R be given, and let ei be the ith unit vector (all
components are zero except for the ith component which is 1). For any x ∈ D,
we define

∇if(x) =
∂f

∂xi
(x) = lim

h→0

f(x + hei) − f(x)
h

(B.2)

provided that the limit exists. We call ∇if(x) the ith partial derivative of f at
point x ∈ D. Assuming that the partial derivative exists for each 1 ≤ i ≤ n,
the gradient of f at x is defined to be

∇f(x) =
( ∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)
)

. (B.3)
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Now let fix x ∈ D where D is some open nonempty subset of Rn, and let
u ∈ Rn be a vector of unit norm (‖u‖ = 1). Define

Duf(x) = lim
t→0

f(x + tu) − f(x)
t

(B.4)

provided that the limit exists. We call Duf(x) the directional derivative of f
at x, in the direction of the unit vector u.

Definition B.10 (Gateaux Differentiability). We say that f is (Gateaux)
differentiable at x ∈ D if the gradient exists and satisfies ∇f(x)T u = Duf(x).
The function f is called differentiable over D ⊂ Rn if it is differentiable at
every x ∈ D.

If f is differentiable over an open set D and the gradient∇f(x) is a continuous
function of x, then f is said to be continuously differentiable. Continuously
differentiable functions are Frechet differentiable, which implies Gateaux dif-
ferentiability [98].

Remark B.11. Throughout the book, all functions are assumed to be continu-
ously differentiable over some open set. In this case, Gateaux differentiability
is equivalent to Frechet differentiability, and therefore we make no distinction
between these two concepts.

Now assume that each of the partial derivatives of a function f : D → R is a
continuously differentiable function at x ∈ D. We use the notation

hi,j(x) =
∂2f

∂xi∂xj
(x) =

∂

∂xi

∂f

∂xj
(x)

to indicate the ith partial derivative of ∂f
∂xj

at a point x ∈ D.

Definition B.12 (Hessian Matrix). The matrix H(x) = (hi,j(x)) ∈ Rn×n

is called the Hessian matrix (or simply the Hessian) of f : D → R at x ∈
D ⊂ Rn.

When D ⊂ R, the first derivative (if it exists) of f : D → R at x ∈ D ⊂
R is denoted by f ′(x) = df

dx(x). If f ′ is itself differentiable, we denote the
derivative of f ′ at x by f ′′(x) = d2f

dx2 (x) and call f ′′ the second derivative
of f . When f ′′(x) exists for all x ∈ D, f is said to be twice differentiable.
If, in addition, the second derivative is a continuous function, we say that f
is twice continuously differentiable. Note that for f ′′(x) to exist at x, f ′(y)
must exist in some open ball centered at x (we consider functions over an
open interval) and f ′(x) must be differentiable at x.

A fundamental result of the analysis is the mean value theorem.

Theorem B.13 (Mean Value Theorem). Suppose that f : D → R is
continuously differentiable over an open interval D ⊂ R. Then, for every
a, b ∈ D, there exists some ξ ∈ [a, b] such that

f(b) − f(a) = f ′(ξ)(b − a) . (B.5)
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here is also the corresponding mean value theorem for Gateaux differentiable
functions f : D → R with D ⊂ Rn [89]. This however is in general not true
for mappings from D ⊂ Rn into Rm with m > 1.

Finally, we define monotonic functions.

Definition B.14 (Monotonic Functions). Let D ⊂ R be an open interval
(segment). Then f is said to be monotonically increasing (decreasing) on
D if x < y for any x, y ∈ D implies f(x) ≤ f(y) (f(x) ≥ f(y)). If the
last inequality is strict inequality, then we say that f is strictly increasing
(decreasing).

If f : D → R is differentiable, then f is monotonically increasing (decreasing)
on D if and only if its first derivative is nonnegative (nonpositive) on this set.

B.2 Convex Sets and Functions

Definition B.15 (Convex Set). We say that D ⊂ Rn is a convex set if

(1 − µ)x̂ + µx̌ ∈ D (B.6)

for all µ ∈ (0, 1) and x̂, x̌ ∈ D.

Throughout this section, unless otherwise stated, it is assumed that D ⊂
Rn is a nonempty convex set. Moreover, we use x(µ) to denote the convex
combination of some x̂ ∈ Rn and x̌ ∈ Rn, that is x(µ) = (1 − µ)x̂ + µx̌.

Definition B.16 (Convex Function). A function f : D → R is said to be
convex if D ⊂ Rn is a convex set and

f(x(µ)) ≤ (1 − µ)f(x̂) + µf(x̌) (B.7)

for all µ ∈ (0, 1) and x̂, x̌ ∈ D. The function f is said to be strictly convex if
there is a strict inequality in (B.7) for all µ ∈ (0, 1). We say that a function
f is concave if −f is convex.

Now we provide necessary and sufficient conditions for differentiable and
twice continuously differentiable functions to be convex.

Theorem B.17 (First-order Condition). Let f : D → R be differentiable
(over D ⊂ Rn). Then, f is convex if and only if

∀x,z∈D f(z) ≥ f(x) + (z − x)T∇f(x) . (B.8)

The function f is strictly convex whenever there is strict inequality for all
z �= x.
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Theorem B.18 (Second-order Condition). Let D be a convex set with a
nonempty interior. Suppose that f : D → R is a twice continuously differen-
tiable function. Then, f is convex if and only if ∇2f(x) is positive semidefi-
nite for all x ∈ D.

In the above theorem, if ∇2f(x) is positive definite for all x ∈ D, then f is
strictly convex. The converse, however, does not need to hold. A sufficient
condition for the Hessian to be positive definite is that f is strongly convex.

B.2.1 Strong Convexity

Strongly convex functions are defined as follows.

Definition B.19. A function f : D → R is said to be strongly convex (with
modulus of strong convexity c) if there exists c > 0 such that

f(x(µ)) ≤ (1 − µ)f(x̂) + µf(x̌) − 1
2
cµ(1 − µ)‖x̂ − x̌‖2

2 (B.9)

for all x̂, x̌ ∈ D and µ ∈ (0, 1).

Observation B.20. A function f : D → R is strongly convex with modulus
of strong convexity c if and only if g(x) = f(x) − 1/2c‖x‖2

2 is convex.

Proof. Let x̂, x̌ ∈ D be arbitrary. Suppose that f is strongly convex. Then,
by the definition, we have

f((1 − µ)x̂ + µx̌) ≤ (1 − µ)f(x̂) + µf(x̌) − 1
2
cµ(1 − µ)‖x̂ − x̌‖2

2

= (1 − µ)f(x̂) + µf(x̌) − 1
2
cµ(1 − µ)

(‖x̂‖2
2 − 2〈x̂, x̌〉 + ‖x̌‖2

2

)
= (1 − µ)f(x̂) + µf(x̌) +

1
2
c(1 − µ)2‖x̂‖2

2 −
1
2
c(1 − µ)‖x̂‖2

2

+
1
2
cµ2‖x̌‖2

2 −
1
2
cµ‖x̌‖2

2 + cµ(1 − µ)〈x̂, x̌〉

= (1 − µ)f(x̂) + µf(x̌) +
1
2
c‖(1 − µ)x̂ + µx̌‖2

2

− 1
2
c(1 − µ)‖x̂‖2

2 −
1
2
cµ‖x̌‖2

2

for all µ ∈ (0, 1). Hence, f((1 − µ)x̂ + µx̌) − 1
2c‖(1 − µ)x̂ + µx̌‖2

2 ≤
(1 − µ)f(x̂) + µf(x̌) − 1

2c(1 − µ)‖x̂‖2
2 − 1

2cµ‖x̌‖2
2 which is just convexity of

g(x) = f(x) − 1/2c‖x‖2
2. Assuming convexity of g and proceeding in reverse

order proves the converse.

By the observation, it is clear that any strongly convex function is strictly
convex. However, as already mentioned above, the converse does not hold in
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general. A standard example of a strictly convex function that is not strongly
convex is R → R+ : x → x4. Another example is the function R++ → R++ :
x → 1/x, which is strictly convex on R++ but not strongly convex. Yet it is
strongly convex on any closed bounded interval on R++. Intuitively, strong
convexity is equivalent to assuming that the curvature of f is positive and
bounded away from zero at every point. When f : D → R is continuously
differentiable, then the following can be shown to hold [88].

Theorem B.21. Suppose that f : D → R is continuously differentiable.
Then, f is strongly convex (with modulus of strong convexity c) if and only
if there exists a constant c > 0 such that(∇f(x) −∇f(y)

)T (x − y) ≥ c‖x− y‖2
2 (B.10)

for all x,y ∈ D.

In words, the theorem above says that strong convexity of f is equivalent to
strong monotonicity of the gradient ∇f . When f : D → R is twice continu-
ously differentiable, then we have the following result [88].

Theorem B.22. Let D ⊂ Rn be a convex set with nonempty interior. Then,
f : D → R is strongly convex (with modulus of strong convexity c) if and only
if

∇2f(x) − cI (B.11)

is positive semidefinite for all x ∈ D.

B.3 Log-Convex Functions

Definition B.23 (Log-convex function). A function f : D → R++ is said
to be log-convex if D ⊂ R

n is a convex set and log f is convex, i.e., if we have

log f
(
(1 − µ)x̂ + µx̌

) ≤ (1 − µ) log f(x̂) + µ log f(x̌) (B.12)

for all µ ∈ (0, 1) and x̂, x̌ ∈ D. If there is strict inequality in (B.12) for all
µ ∈ (0, 1), we say that f is strictly log-convex.

Similarly, we say that f is log-concave if log f is concave. Note that f is
log-concave if and only if 1/f is log-convex. The list below presents some
examples of log-convex and log-concave functions [11].

(i) f(x) = ecx, x ∈ R, is both log-convex and log-concave for any real c.
(ii) f(x) = xc on R++ is log-convex for c ≤ 0 and log-concave for c ≥ 0.
(iii) f(x) = ex/(1 − ex), x < 0, is log-convex.
(iv) The Gamma function f(x) =

∫∞
0 ux−1e−udu is log-convex for x ≥ 1.

In all that follows, we exclusively focus on log-convex functions. For more
information about log-concavity, the reader is referred to [11].
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Remark B.24. As the logarithm is not defined at zero, any log-convex function
f is by definition positive. However, it is often convenient to allow f to take
on the value zero, in which case one takes log f(x) = −∞ [11]. A nonnegative
function f is said to be log-convex if the extended-value function log f is
convex.

Theorem B.25. Let D ⊂ R
n be a convex nonempty set. A positive function

f : D → R++ is log-convex on D if and only if

f(x(µ)) ≤ f(x̂)1−µf(x̌)µ (B.13)

for all µ ∈ (0, 1) and x̂, x̌ ∈ D.

Proof. Let x̂, x̌ ∈ D and µ ∈ (0, 1) be arbitrary and note that due to convexity
of D, x(µ) ∈ D. Writing the right-hand side of (B.12) as log(f(x̂)1−µf(x̌)µ)
and considering the monotonicity of the logarithm yields (B.13). Conversely,
taking the logarithm on both sides of (B.13) and rearranging gives (B.12).

The next result relates log-convexity to convexity.

Theorem B.26. Let f : D → R++ be any log-convex function. Then,

(i) f is convex.
(ii) f is strictly convex on D ⊂ R if f is strictly monotonic.

Proof. Let x̂, x̌ ∈ D be arbitrary, and let f be log-convex. Since1

a1−µbµ ≤ (1 − µ)a + µb (B.14)

for any positive constants a, b and µ ∈ (0, 1), it follows from (B.13) that

f(x(µ)) ≤ f(x̂)1−µf(x̌)µ ≤ (1 − µ)f(x̂) + µf(x̌)

for µ ∈ (0, 1). Hence, f is convex. To prove (ii), suppose that the strict
convexity assertion is false. Then, there exist x̂, x̌ ∈ D ⊂ R with x̂ �= x̌ and
µ ∈ (0, 1) such that f(x(µ)) = f(x̂)1−µf(x̌)µ = (1 − µ)f(x̂) + µf(x̌). Since
equality holds in (B.14) if and only if a = b, this implies that f(x̂) = f(x̌) = c
for some positive c. Hence, by strict monotonicity, x̂ = x̌, which contradicts
x̂ �= x̌.

Note that the converse to Theorem B.26 does not hold since log-convexity is
stronger than convexity. For instance, R → R++ : x → ex − 1 is convex but
not log-convex.

In the case of twice continuously differentiable functions, we have the
following result.

1 In words, this inequality says that the arithmetic mean bounds the geometric
mean [84].
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Theorem B.27. Let D ⊂ Rn be an open convex set and suppose that f :
D → R++ is twice continuously differentiable. Then f is log-convex on D if
and only if

∇f(x)∇f(x)T ≤ f(x)∇2f(x) (B.15)

for all x ∈ D.

Proof. Let g(x) = log f(x),x ∈ D. Since f is positive, g : D → R is well
defined and twice continuously differentiable on D. Thus, the theorem imme-
diately follows by utilizing Theorem B.18.

B.3.1 Inverse Functions of Monotonic Log-Convex Functions

Now assume that f : D → R++ is a continuous bijection where D ⊂ R is any
open interval on the real line and g : R++ → D is the inverse function so that
(Theorem B.5)

f(g(x)) ≡ x, x > 0 ⇔ g(f(x)) ≡ x, x ∈ D . (B.16)

Thus, f is a strict monotone (either increasing or decreasing) function. More-
over, f is strictly increasing (decreasing) if and only if g is strictly increasing
(decreasing).

Theorem B.28. Let f and g be as defined above. Define ge(x) = g(ex) for
all x ∈ R. Then, f is log-convex if and only if

(i) ge : R → D is convex when f is strictly decreasing.
(ii) ge : R → D is concave when f is strictly increasing.

Moreover, f is strictly log-convex if and only if ge is, respectively, strictly
convex or strictly concave.

Proof. Let x̂, x̌ ∈ D be arbitrary, and let f be log-convex. Then, by Theorem
B.25, we have f((1−µ)x̂+µx̌) ≤ f(x̂)1−µf(x̌)µ for all µ ∈ (0, 1). Combining
this with (B.16) yields

(1 − µ)x̂ + µx̌ ≤ g
(
f(x̂)1−µf(x̌)µ

)
f strictly increasing

(1 − µ)x̂ + µx̌ ≥ g
(
f(x̂)1−µf(x̌)µ

)
f strictly decreasing .

Define ẑ = log f(x̂) ∈ R and ž = log f(x̌) ∈ R. Hence, x̂ = g(eẑ), x̌ = g(ež)
and f(x̂) = eẑ, f(x̌) = ež from which it follows that, for all ẑ, ž ∈ R and
µ ∈ (0, 1), one has

(1 − µ)g(eẑ) + µg(ež) ≤ g
(
e(1−µ)ẑ+µž

)
f strictly increasing

(1 − µ)g(eẑ) + µg(ež) ≥ g
(
e(1−µ)ẑ+µž

)
f strictly decreasing .

This proves one direction of the theorem. Reversing the order of the reasoning
proves the converse. The proof for the strictly convex case is identical except
that strict inequalities are used and strict monotonicity is utilized.



180 B Some Concepts and Results from Convex Analysis

In the case of twice continuously differentiable functions, we have the follow-
ing relationship between f and g.

Theorem B.29. Suppose that f : D → R++ and g : R++ → D are twice
continuously differentiable. Then, f is log-convex if and only if

0 ≤ g′(x) + xg′′(x) f strictly decreasing
0 ≥ g′(x) + xg′′(x) f strictly increasing

(B.17)

for all x > 0.

Proof. By Theorem B.28, f is log-convex on D if and only if ge(x) = g(ex)
is either convex on R or concave on R depending on whether f is strictly
decreasing or strictly increasing. Taking the second derivative of ge(x) yields
g′′e (x) = ex(g′′(ex)ex + g′(ex)) for all x ∈ R. Thus, by Theorem B.18, f is
log-convex if and only if

0 ≤ g′(ex) + exg′′(ex) f strictly decreasing
0 ≥ g′(ex) + exg′′(ex) f strictly increasing

for all x ∈ R. Since R → R++ : x → ex is bijective and ex > 0 for all x ∈ R,
this is equivalent to (B.17).

B.4 Convergence of Gradient Projection Algorithms

Here we present some standard results that are utilized in Chapt. 6 to prove
global convergence of the power control algorithm. For a thorough treatment
of the convex optimization theory, the reader is referred to [83, 88, 11].

Suppose that f : Rn → R attains its minimum over D ⊂ Rn. Throughout
this section, it is assumed that f is continuously differentiable and D ⊂ R

n

is a nonempty, closed, and convex set. The first result proves necessary and
sufficient conditions for a vector x ∈ D to be optimal.

Theorem B.30. Let f : D → R be given.

(i) Suppose that x ∈ D is a local minimum of f over D. Then,

∀z∈D ∇f(x)T (z − x) ≥ 0 (B.18)

(ii) If f is convex, then (B.18) is also sufficient for x ∈ D to minimize f
over D.

Proof. Let x ∈ D be a local minimum of f over D. Suppose that ∇f(x)T (z−
x) < 0 for some z ∈ D. By the mean value theorem, for every ξ ∈ [0, 1], there
exists s ∈ [0, 1] such that f(x+ξ(z−x)) = f(x)+ξ∇f

(
x+sξ(z−x)

)T (z−x).
Since ∇f is continuous and ∇f(x)T (z − x) < 0 (by assumption), we must
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have ∇f(x + sξ(z − x))T (z − x) < 0 for sufficiently small ξ > 0. Therefore,
f(x + ξ(z − x)) < f(x) where x + ξ(z − x) is feasible for all ξ ∈ [0, 1] since
D is convex. This , however, contradicts the local optimality of x, and hence
proves (i).

(ii) Considering Theorem B.17 shows that if f is convex, then f(z) ≥
f(x) + ∇f(x)T (z − x) for all z ∈ D. Thus, by (B.18), it follows that f(z) ≥
f(x) for all z ∈ D.

Definition B.31 (Stationary Point). Any vector (point) satisfying (B.18)
is referred to as a stationary point of f .

Note that if x in (B.18) is an interior point of D or D = Rn, then the
optimality condition reduces to ∇f(x) = 0. An important component of the
gradient projection algorithm is the projection on a closed convex subset of
Rn. We prove that the projection is well defined and unique.

Theorem B.32 (Projection Theorem). For all y ∈ R
n, a vector ΠD[y] ∈

D is said to be the projection of y on D ⊂ Rn if

ΠD[y] = arg min
x∈D

‖y − x‖2
2 . (B.19)

The minimum exists and is unique. Moreover, given some y ∈ Rn, ΠD[y] is
the unique solution to (B.19) if and only if

∀x∈D

(
y − ΠD[y]

)T (
x − ΠD[y]

) ≤ 0 . (B.20)

Proof. By assumption, D is closed but not necessarily bounded. However,
the problem in (B.19) is equivalent to minimizing the same metric over all
x ∈ D such that ‖y − x‖2 ≤ ‖y − z‖2 for some arbitrary z ∈ D. Since this is
a compact set and the norm is a continuous function of the vector elements,
it follows that the minimum exists. Moreover, the minimum is unique since
‖y−x‖2

2 is a strictly convex function of x ∈ D. The proof of (B.20) proceeds
along the same lines as the proof of (B.18).

Now let us introduce the notion of Lipschitz continuity.

Definition B.33 (Lipschitz Continuity Condition). Let Rn be Euclid-
ean space, and let D ⊂ Rn. A function f : D → Rn is said to satisfy the
Lipschitz continuity condition (or is called Lipschitz continuous) if there ex-
ists a constant M > 0 such that

‖f(x) − f(y)‖2 ≤ M‖x− y‖2 (B.21)

for all x,y ∈ D.

We point out that this definition can be extended to functions between arbi-
trary metric spaces. The following lemma is also known as the descent lemma
and is a key ingredient in proving the convergence of gradient methods to a
stationary point
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Lemma B.34. If f : D → R is continuously differentiable and its gradient
is Lipschitz continuous with some Lipschitz constant M > 0, then

f(x + y) ≤ f(x) + yT∇f(x) +
M

2
‖y‖2

2 (B.22)

for all x,y ∈ D.

Proof. We have

f(x + y) − f(x) =
∫ 1

0

yT∇f(x + µy)dµ

=
∫ 1

0

yT
(∇f(x) + ∇f(x + µy) −∇f(x)

)
dµ

≤ yT∇f(x) + ‖y‖2

∫ 1

0

‖∇f(x + µy) −∇f(x)‖2 dµ

≤ yT∇f(x) + ‖y‖2
2M

∫ 1

0

µ dµ = yT∇f(x) + ‖y‖2
2

M

2

for all x,y ∈ D.

We use this lemma to prove the convergence of the gradient projection algo-
rithm:

x(n + 1) = T (x(n)) , x(0) ∈ D (B.23)

where T : Rn → D is defined to be

T (x) := ΠD

[
x − δ∇f(x)

]
(B.24)

and δ is a positive constant (sufficiently small).

Theorem B.35. Let f : D → R be continuously differentiable and bounded
below on a nonempty, closed and convex set D ⊂ R

n. Suppose that ∇f :
D → Rn is Lipschitz continuous with the Lipschitz constant M > 0. Let
0 < δ < 2/M and x ∈ D be arbitrary. Then,

(i) F (T (x)) ≤ F (x) − (1/δ − M/2)‖T (x) − x‖2
2.

(ii) T (x) = x if and only if x is a stationary point. Moreover, if f is convex,
we have T (x) = x if and only if x minimizes f over D.

Proof. Note that T (x) is the projection of x−δ∇f(x) on D. Hence, it follows
from (B.20) that ∀z∈D (z− T (x))T (x− δ∇f(x) − T (x)) ≤ 0. Particularizing
this to z = x ∈ D yields (T (x)−x)T∇f(x) ≤ −1/δ‖T (x)−x‖2

2. On the other
hand, considering Lemma B.34 gives (T (x)− x)T∇f(x) ≥ f(T (x))− f(x)−
M/2‖T (x)−x‖2

2. Therefore, f(T (x)) ≤ f(x)−(1/δ−M/2)‖T (x)−x‖2
2 which

proves (i).
(ii) By (B.24), T (x) is the projection of x − δ∇f(x) on D. Therefore, if

T (x) = x, (B.20) implies that δ∇f(x)T (z − x) ≥ 0 for all z ∈ D with δ > 0.
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Conversely, if δ∇f(x)T (z−x) ≥ 0 for all z ∈ D, then (x−∇f(x)−x)T (z−x) ≤
0, from which we have T (x) = x. The assertion for a convex function follows
from (ii) in Theorem B.30.

Now let {x(n)} be the sequence generated by (B.23). Provided that 0 < δ <
2/M , it follows from (i) that {f(x(n))} is nonincreasing, and therefore this
sequence converges since f is bounded below on D. From this, the left-hand
side of

f(x(n + 1)) − f(x(n)) ≤
(M

2
− 1

δ

)
‖T (x(n)) − x(n)‖2

2

tends to zero, whereas the right-hand side is nonpositive if 0 < δ < 2/M so
that ‖T (x(n))−x(n)‖2

2 must tend to zero as well. Hence, if x∗ is a limit point
of {x(n)}, the sequence T (x(n)) converges to x∗. Moreover, by continuity of
T (T is continuous since it is a concatenation of continuous maps), we must
have T (x∗) = x∗. Finally, if f is convex, then the sequence {x(n)} generated
by (B.23) converges to some x∗ that minimizes f over D. We summarize this
in a theorem.

Theorem B.36. Suppose that the conditions of Theorem B.35 are satisfied.
Then, provided that 0 < δ < 2/M , the sequence {x(n)} generated by (B.23)
converges to some x∗ satisfying (z−x∗)∇f(x∗) ≥ 0 for all z ∈ D. If f : D →
R is a convex function, then x∗ minimizes f over D.

Finally we point out that if f : D → R is strongly convex (see Sect. B.2.1),
then the rate of convergence is geometric (Definition 6.27). The proof can be
found in [88].
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